如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交C點(diǎn),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)C的坐標(biāo)為(0,3)它的對稱軸是直線
(1)求拋物線的解析式;
(2)M是線段AB上的任意一點(diǎn),當(dāng)△MBC為等腰三角形時,求M點(diǎn)的坐標(biāo).
(1)
(2)M點(diǎn)坐標(biāo)為(0,0)或
【解析】
分析:(1)根據(jù)拋物線的對稱軸得到拋物線的頂點(diǎn)式,然后代入已知的兩點(diǎn)理由待定系數(shù)法求解即可。
(2)首先求得點(diǎn)B的坐標(biāo),然后分CM=BM時和BC=BM時兩種情況根據(jù)等腰三角形的性質(zhì)求得點(diǎn)M的坐標(biāo)即可。
解:(1)∵拋物線的對稱軸是直線,∴設(shè)拋物線的解析式。
把A(2,0)C(0,3)代入得:,解得:。
∴拋物線的解析式為,即。
(2)由y=0得,∴x1=1,x2=﹣3。
∴B(﹣3,0)。
分兩種情況討論(因為BC=MC時,點(diǎn)M已不在線段AB上,無需考慮):
①CM=BM時,
∵BO=CO=3, 即△BOC是等腰直角三角形,
∴當(dāng)M點(diǎn)在原點(diǎn)O時,△MBC是等腰三角形。
∴M點(diǎn)坐標(biāo)(0,0)。
②BC=BM時,
在Rt△BOC中,BO=CO=3,∴由勾股定理得。
∴BM=。
∴M點(diǎn)坐標(biāo)。
綜上所述,當(dāng)△MBC為等腰三角形時,M點(diǎn)坐標(biāo)為(0,0)或。
題型】解答題
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
10 |
10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com