【題目】解方程:
(1)(x+1)(x﹣7)=0
(2)x2﹣4x+3=0
(3)2x2﹣4x+5=0
(4)x2﹣3x﹣1=0
【答案】(1)x1=﹣1,x2=7;(2)x1=1,x2=3;(3)原方程無(wú)實(shí)數(shù)解;(4)x1=,x2=.
【解析】
(1)根據(jù)因式分解法,可得答案;
(2)根據(jù)因式分解法,可得答案;
(3)根據(jù)公式法,可得答案;
(4)根據(jù)公式法,可得答案.
解:(1)(x+1)(x﹣7)=0
∴x+1=0或x﹣7=0,
解得:x1=﹣1,x2=7;
(2)x2﹣4x+3=0
(x﹣1)(x﹣3)=0,
∴x﹣1=0或x﹣3=0,
解得x1=1,x2=3;
(3)2x2﹣4x+5=0,
a=2,b=﹣4,c=5,
△=b2﹣4ac=16﹣4×2×5=﹣24<0,
∴原方程無(wú)實(shí)數(shù)解;
(4)x2﹣3x﹣1=0,
∵a=1,b=﹣3,c=﹣1,
∴△=b2﹣4ac=9﹣4×1×(﹣1)=13>0,
∴x==,
∴x1=,x2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩建筑物AB和CD的水平距離為30米,如圖所示,從A點(diǎn)測(cè)得太陽(yáng)落山時(shí),太陽(yáng)光線AC照射到AB后的影子恰好在CD的墻角時(shí)的角度∠ACB=60°,又過(guò)一會(huì)兒,當(dāng)AB的影子正好到達(dá)CD的樓頂D時(shí)的角度∠ADE=30°,DE⊥AB于E,則建筑物CD的高是多少米?(≈1.732,結(jié)果保留兩位有效數(shù)字)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E為OC上動(dòng)點(diǎn)(不與O、C重合),作AF⊥BE,垂足為G,分別交BC、OB于F、H,連接OG、CG.
(1)求證:AH=BE;
(2)∠AGO的度數(shù)是否為定值?說(shuō)明理由;
(3)若∠OGC=90°,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAC=90°,E是BC的中點(diǎn),AD∥BC,AE∥DC,EF⊥CD于點(diǎn)F.
(1)求證:四邊形AECD是菱形;
(2)若AB=6,BC=10,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中(如圖),已知拋物線經(jīng)過(guò),,頂點(diǎn)為.
求該拋物線的表達(dá)方式及點(diǎn)的坐標(biāo);
將中求得的拋物線沿軸向上平移個(gè)單位,所得新拋物線與軸的交點(diǎn)記為點(diǎn).當(dāng)時(shí)等腰三角形時(shí),求點(diǎn)的坐標(biāo);
若點(diǎn)在中求得的拋物線的對(duì)稱軸上,聯(lián)結(jié),將線段繞點(diǎn)逆時(shí)針轉(zhuǎn)得到線段,若點(diǎn)恰好落在中求得的拋物線上,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=(x﹣3)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn),已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)該二次函數(shù)圖象上的點(diǎn)A(1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)拋物線上是否存在一點(diǎn)P,使S△ABP=S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足為D點(diǎn),AE平分∠BAC,交BD于點(diǎn)F交BC于點(diǎn)E,點(diǎn)G為AB的中點(diǎn),連接DG,交AE于點(diǎn)H,下列結(jié)論錯(cuò)誤的是( 。
A.AH=2DFB.HE=BEC.AF=2CED.DH=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是矩形,為原點(diǎn),、的坐標(biāo)分別為、,是邊上的一個(gè)動(dòng)點(diǎn)(不與,重合),過(guò)點(diǎn)的反比例函數(shù)的圖象與邊交于點(diǎn).
當(dāng)時(shí),寫(xiě)出點(diǎn)、的坐標(biāo);
求的值;
是否存在這樣的點(diǎn),使得將沿對(duì)折后,點(diǎn)恰好落在上?若存在,求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和幾位同學(xué)做手的影子游戲時(shí),發(fā)現(xiàn)對(duì)于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長(zhǎng)度計(jì)算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長(zhǎng)AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長(zhǎng)度和為6cm.那么燈泡離地面的高度為 .
(2)不改變①中燈泡的高度,將兩個(gè)邊長(zhǎng)為30cm的正方形框架按圖②擺放,請(qǐng)計(jì)算此時(shí)橫向影子A′B,D′C的長(zhǎng)度和為多少?
(3)有n個(gè)邊長(zhǎng)為a的正方形按圖③擺放,測(cè)得橫向影子A′B,D′C的長(zhǎng)度和為b,求燈泡離地面的距離.(寫(xiě)出解題過(guò)程,結(jié)果用含a,b,n的代數(shù)式表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com