【題目】如圖,在正方形ABCD中,AD=2 ,把邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到線(xiàn)段BP,連接AP并延長(zhǎng)交CD于點(diǎn)E,連接PC,則三角形PCE的面積為 .
【答案】6 ﹣10
【解析】解:∵四邊形ABCD是正方形, ∴∠ABC=90°,
∵把邊BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)30°得到線(xiàn)段BP,
∴PB=BC=AB,∠PBC=30°,
∴∠ABP=60°,
∴△ABP是等邊三角形,
∴∠BAP=60°,AP=AB=2 ,
∵AD=2 ,
∴AE=4,DE=2,
∴CE=2 ﹣2,PE=4﹣2 ,
過(guò)P作PF⊥CD于F,
∴PF= PE=2 ﹣3,
∴三角形PCE的面積= CEPF= ×(2 ﹣2)×(4﹣2 )=6 ﹣10,
所以答案是:6 ﹣10.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì),掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線(xiàn)相等,并且互相垂直平分,每條對(duì)角線(xiàn)平分一組對(duì)角;正方形的一條對(duì)角線(xiàn)把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線(xiàn)與邊的夾角是45o;正方形的兩條對(duì)角線(xiàn)把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;①旋轉(zhuǎn)后對(duì)應(yīng)的線(xiàn)段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求證:AC=BD;
(2)若sin∠C= ,BC=12,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形AOCB邊OC在x軸上點(diǎn)B的坐標(biāo)為(3,1),將此矩形折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)B折至點(diǎn)B'處,折痕為EF,則點(diǎn)B'的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】保護(hù)視力要求人寫(xiě)字時(shí)眼睛和筆端的距離應(yīng)超過(guò)30cm,圖1是一位同學(xué)的坐姿,把他的眼睛B,肘關(guān)節(jié)C和筆端A的位置關(guān)系抽象成圖2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的這種坐姿符合保護(hù)視力的要求嗎?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的兩邊分別與射線(xiàn)CB,DC相交于點(diǎn)E,F(xiàn),且∠EAF=60°.
(1)如圖1,當(dāng)點(diǎn)E是線(xiàn)段CB的中點(diǎn)時(shí),直接寫(xiě)出線(xiàn)段AE,EF,AF之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點(diǎn)E是線(xiàn)段CB上任意一點(diǎn)時(shí)(點(diǎn)E不與B、C重合),求證:BE=CF;
(3)如圖3,當(dāng)點(diǎn)E在線(xiàn)段CB的延長(zhǎng)線(xiàn)上,且∠EAB=15°時(shí),求點(diǎn)F到BC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了豐富同學(xué)們的課余生活,某學(xué)校計(jì)劃舉行“親近大自然”戶(hù)外活動(dòng),現(xiàn)隨機(jī)抽取了部分學(xué)生進(jìn)行主題為“你最想去的景點(diǎn)是?”的問(wèn)卷調(diào)查,要求學(xué)生必須從“A(洪家關(guān)),B(天門(mén)山),C(大峽谷),D(黃龍洞)”四個(gè)景點(diǎn)中選擇一項(xiàng),根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中所提供的信息,完成下列問(wèn)題:
(1)本次調(diào)查的學(xué)生人數(shù)為;
(2)在扇形統(tǒng)計(jì)圖中,“天門(mén)山”部分所占圓心角的度數(shù)為;
(3)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若該校共有2000名學(xué)生,估計(jì)該校最想去大峽谷的學(xué)生人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車(chē)從A地沿這條公路勻速駛向C地,乙車(chē)從B地沿這條公路勻速駛向A地,在甲車(chē)出發(fā)至甲車(chē)到達(dá)C地的過(guò)程中,甲、乙兩車(chē)各自與C地的距離y(km)與甲車(chē)行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車(chē)出發(fā)2h時(shí),兩車(chē)相遇;②乙車(chē)出發(fā)1.5h時(shí),兩車(chē)相距170km;③乙車(chē)出發(fā)2 h時(shí),兩車(chē)相遇;④甲車(chē)到達(dá)C地時(shí),兩車(chē)相距40km.其中正確的是(填寫(xiě)所有正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+c(a≠0)與y軸交與點(diǎn)C(0,3),與x軸交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(4,0),拋物線(xiàn)的對(duì)稱(chēng)軸方程為x=1.
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)M從A點(diǎn)出發(fā),在線(xiàn)段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)N從B點(diǎn)出發(fā),在線(xiàn)段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),設(shè)△MBN的面積為S,點(diǎn)M運(yùn)動(dòng)時(shí)間為t,試求S與t的函數(shù)關(guān)系,并求S的最大值;
(3)在點(diǎn)M運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使△MBN為直角三角形?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)計(jì)劃修建一條長(zhǎng)15千米的鄉(xiāng)村公路,已知甲工程隊(duì)每天比乙工程隊(duì)每天多修路0.5千米,乙工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)是甲工程隊(duì)單獨(dú)完成修路任務(wù)所需天數(shù)的1.5倍.
(1)求甲、乙兩個(gè)工程隊(duì)每天各修路多少千米?
(2)若甲工程隊(duì)每天的修路費(fèi)用為0.5萬(wàn)元,乙工程隊(duì)每天的修路費(fèi)用為0.4萬(wàn)元,要使兩個(gè)工程隊(duì)修路總費(fèi)用不超過(guò)5.2萬(wàn)元,甲工程隊(duì)至少修路多少天?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com