【題目】如圖,在△ABC中,點D是BC的中點,點E,F(xiàn)分別在線段AD及其延長線上,且DE=DF.給出下列條件:①BE⊥EC;②BF∥CE;③AB=AC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是(只填寫序號).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=﹣ x+3與兩坐標(biāo)軸分別相交于A,B兩點,若點P,Q分別是線段AB,OB上的動點,且點P不與A,B重合,點Q不與O,B重合.
(1)若OP⊥AB于點P,△OPQ為等腰三角形,這時滿足條件的點Q有幾個?請直接寫出相應(yīng)的OQ的長;
(2)當(dāng)點P是AB的中點時,若△OPQ與△ABO相似,這時滿足條件的點Q有幾個?請分別求出相應(yīng)的OQ的長;
(3)試探究是否存在以點P為直角頂點的Rt△OPQ?若存在,求出相應(yīng)的OQ的范圍,并求出OQ取最小值時點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點E是BC上的一個動點,EG⊥AB,EF⊥AC,CD⊥AB,點G,F(xiàn),D分別是垂足.求證:CD=EG+EF;
猜想探究:
(2)如圖2,在△ABC中,AB=AC,點E是BC的延長線上的一個動點,EG⊥AB于G,EF⊥AC交AC延長線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關(guān)系為;
(3)如圖3,邊長為10的正方形ABCD的對角線相交于點O、H在BD上,且BH=BC,連接CH,點E是CH上一點,EF⊥BD于點F,EG⊥BC于點G,則EF+EG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的弦BC長為8,點A是⊙O上一動點,且∠BAC=45°,點D,E分別是BC,AB的中點,則DE長的最大值是( )
A.4
B.4
C.8
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年6月28日,“合福高鐵”正式開通,對南平市的旅游產(chǎn)業(yè)帶來了新的發(fā)展機遇.某旅行社抽樣調(diào)查了2015年8月份該社接待來南平市若干個景點旅游的人數(shù),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖表,請根據(jù)圖表信息回答下列問題:
景點 | 頻數(shù) | 頻率 |
九曲溪 | 116 | 0.29 |
歸宗巖 | 0.25 | |
天成奇峽 | 84 | 0.21 |
溪源峽谷 | 64 | 0.16 |
華陽山 | 36 | 0.09 |
(1)此次共調(diào)查人,
(2)補全條形統(tǒng)計圖;
(3)由上表提供的數(shù)據(jù)可以制成扇形統(tǒng)計圖,則“天成奇峽”所對扇形的圓心角為°;
(4)該旅行社預(yù)計今年8月份將要接待來以上景點的游客約2 500人,根據(jù)以上信息,請你估計去“九曲溪”的游客大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△A1A2A3 , △A3A4A5 , △A5A6A7 , △A7A8A9 , …,都是等邊三角形,且點A1 , A3 , A5 , A7 , A9的坐標(biāo)分別為A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依據(jù)圖形所反映的規(guī)律,則A100的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中, =a,點G,H分別在邊AB,DC上,且HA=HG,點E為AB邊上的一個動點,連接HE,把△AHE沿直線HE翻折得到△FHE.
(1)如圖1,當(dāng)DH=DA時,填空:∠HGA=度;
(2)如圖1,當(dāng)DH=DA時,若EF∥HG,求∠AHE的度數(shù),并求此時的最小值;
(3)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊DC于點P,且FG⊥AB,G為垂足,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料: 小明遇到這樣兩個問題:
(1)如圖1,AB是⊙O的直徑,C是⊙O上一點,OD⊥AC,垂足為D,BC=﹣6,求OD的長;
(2)如圖2△ABC中,AB=6,AC=4,點D為BC的中點,求AD的取值范圍. 對于問題(1),小明發(fā)現(xiàn)根據(jù)垂徑定理,可以得出點D是AC的中點,利用三角形中位線定理可以解決;對于問題(2),小明發(fā)現(xiàn)延長AD到E,使DE=AD,連接BE,可以得到全等三角形,通過計算可以解決.
請回答:
問題(1)中OD長為;問題(2)中AD的取值范圍是;
參考小明思考問題的方法,解決下面的問題:
(3)如圖3,△ABC中,∠BAC=90°,點D、E分別在AB、AC上,BE與CD相交于點F,AC=mEC,AB=2 EC,AD=nDB.
①當(dāng)n=1時,如圖4,在圖中找出與CE相等的線段,并加以證明;
②直接寫出 的值(用含m、n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)前夕,小東的父母準(zhǔn)備購買若干個粽子和咸鴨蛋(每個粽子的價格相同,每個咸鴨蛋的價格相同).已知粽子的價格比咸鴨蛋的價格貴1.8元,花30元購買粽子的個數(shù)與花12元購買咸鴨蛋的個數(shù)相同,求粽子與咸鴨蛋的價格各多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com