精英家教網 > 初中數學 > 題目詳情

【題目】在矩形ABCD中, =a,點G,H分別在邊AB,DC上,且HA=HG,點E為AB邊上的一個動點,連接HE,把△AHE沿直線HE翻折得到△FHE.

(1)如圖1,當DH=DA時,填空:∠HGA=度;
(2)如圖1,當DH=DA時,若EF∥HG,求∠AHE的度數,并求此時的最小值;
(3)如圖3,∠AEH=60°,EG=2BG,連接FG,交邊DC于點P,且FG⊥AB,G為垂足,求a的值.

【答案】
(1)45°
(2)

解:分兩種情況討論:

第一種情況:

∵∠HAG=∠HGA=45°;

∴∠AHG=90°,

由折疊可知:∠HAE=∠F=45°,∠AHE=∠FHE,

∵EF∥HG,

∴∠FHG=∠F=45°,

∴∠AHF=∠AHG﹣∠FHG=45°,

即∠AHE+∠FHE=45°,

∴∠AHE=22.5°,

此時,當B與G重合時,a的值最小,最小值是2;

第二種情況:

∵EF∥HG,

∴∠HGA=∠FEA=45°,

即∠AEH+∠FEH=45°,

由折疊可知:∠AEH=∠FEH,

∴∠AEH=∠FEH=22.5°,

∵EF∥HG,

∴∠GHE=∠FEH=22.5°,

∴∠AHE=90°+22.5°=112.5°,

此時,當B與E重合時,a的值最小,

設DH=DA=x,則AH=GH= x,

在Rt△AHG中,∠AHG=90°,由勾股定理得:

AG= AH=2x,

∵∠AEH=∠GHE=22.5°,

∴GH=GE= x,

∴AB=AE=2x+ x,

∴a的最小值是 =2+ .


(3)

解:如圖:過點H作HQ⊥AB于Q,

在矩形ABCD中,∠D=∠DAQ=90°,

∴∠D=∠DAQ=∠AQH=90°,

∴四邊形DAQH為矩形,

∴AD=HQ,

設GB=x,則EG=2x,

由折疊可知:∠AEH=∠FEH=60°,

∴∠FEG=60°,

在Rt△EFG中,EG=EF×cos60°,EF=4x,

∴AG=6x

∵HA=HG,HQ⊥AB,

∴AQ=GQ=3x

∴EQ=x

在Rt△HQE中,

∵∠AEH=60°

∴HQ= x

∴a= =


【解析】解:(1)①∵四邊形ABCD是矩形,
∴∠ADH=90°,
∵DH=DA,
∴∠DAH=∠DHA=45°,
∴∠HAE=45°,
∵HA=HG,
∴∠HAE=∠HGA=45°;
所以答案是:45°;
·(3)另解:
如圖:過點H作HQ⊥AB于Q,則∠AQH=∠GOH=90°,
則∠AQH=∠GQH=90°,
在矩形ABCD中,∠D=∠DAQ=90°,
∴∠D=∠DAQ=∠AQH=90°,
∴四邊形DAQH為矩形,
∴AD=HQ,
設AD=x,GB=y,則HQ=x,EG=2y,
由折疊可知:∠AEH=∠FEH=60°,
∴∠FEG=60°,
在Rt△EFG中,EG=EF×cos60°,則EF=4y,
在Rt△HQE中,EQ= = x,
∴QG=QE+EG= x+2y,
∵HA=HG,HQ⊥AB,
∴AQ=GQ= x+2y,
∴AE=AQ+QE= x+2y,
由折疊可知:AE=EF,
x+2y=4y,
∴y= x,
∴AB=2AQ+GB=2( x+2y)+y= x,
∴a= =
【考點精析】本題主要考查了含30度角的直角三角形和矩形的性質的相關知識點,需要掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半;矩形的四個角都是直角,矩形的對角線相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B,C的坐標分別為(1,0),(0,1),(﹣1,0).一個電動玩具從坐標原點0出發(fā),第一次跳躍到點P1 . 使得點P1與點O關于點A成中心對稱;第二次跳躍到點P2 , 使得點P2與點P1關于點B成中心對稱;第三次跳躍到點P3 , 使得點P3與點P2關于點C成中心對稱;第四次跳躍到點P4 , 使得點P4與點P3關于點A成中心對稱;第五次跳躍到點P5 , 使得點P5與點P4關于點B成中心對稱;…照此規(guī)律重復下去,則點P7的坐標是 , 點P2016的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校在開展讀書交流活動中全體師生積極捐書.為了解所捐書籍的種類,對部分書籍進行了抽樣調查,李老師根據調查數據繪制了如圖所示不完整統(tǒng)計圖.請根據統(tǒng)計圖回答下面問題:
(1)本次抽樣調查的書籍有多少本?請補全條形統(tǒng)計圖;
(2)求出圖1中表示文學類書籍的扇形圓心角度數;
(3)本次活動師生共捐書1200本,請估計有多少本科普類書籍?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,點D是BC的中點,點E,F分別在線段AD及其延長線上,且DE=DF.給出下列條件:①BE⊥EC;②BF∥CE;③AB=AC;從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是(只填寫序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀以下材料,并按要求完成相應的任務.

幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對于它們的性質都非常熟悉,生活中還有一種特殊的四邊形﹣﹣箏形.所謂箏形,它的形狀與我們生活中風箏的骨架相似.
定義:兩組鄰邊分別相等的四邊形,稱之為箏形,如圖,四邊形ABCD是箏形,其中AB=AD,CB=CD
判定:①兩組鄰邊分別相等的四邊形是箏形
②有一條對角線垂直平分另一條對角線的四邊形是箏形
顯然,菱形是特殊的箏形,就一般箏形而言,它與菱形有許多相同點和不同點

如果只研究一般的箏形(不包括菱形),請根據以上材料完成下列任務:
如果只研究一般的箏形(不包括菱形),請根據以上材料完成下列任務:
(1)請說出箏形和菱形的相同點和不同點各兩條;
(2)請仿照圖1的畫法,在圖2所示的8×8網格中重新設計一個由四個全等的箏形和四個全等的菱形組成的新圖案,具體要求如下:
①頂點都在格點上;
②所設計的圖案既是軸對稱圖形又是中心對稱圖形;
③將新圖案中的四個箏形都圖上陰影(建議用一系列平行斜線表示陰影).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A、B是圓O上的兩點,∠AOB=120°,C是AB弧的中點.

(1)求證:AB平分∠OAC;
(2)延長OA至P使得OA=AP,連接PC,若圓O的半徑R=1,求PC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD中,AB=3,BC=5,∠ABC的平分線與AD相交于點E,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,點M在AC邊上,且AM=1,MC=4,動點P在AB邊上,連接PC,PM,則PC+PM的最小值是( )

A.
B.6
C.
D.7

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】端午節(jié)是我國的傳統(tǒng)節(jié)日,人們有吃粽子的習慣.某校數學興趣小組為了了解本校學生喜愛粽子的情況,隨機抽取了50名同學進行問卷調查,經過統(tǒng)計后繪制了兩幅尚不完整的統(tǒng)計圖(注:每一位同學在任何一種分類統(tǒng)計中只有一種選擇)

請根據統(tǒng)計圖完成下列問題:
(1)扇形統(tǒng)計圖中,“很喜歡”所對應的圓心角為 ;條形統(tǒng)計圖中,喜歡“糖餡”粽子的人數為 ;
(2)若該校學生人數為800人,請根據上述調查結果,估計該校學生中“很喜歡”和“比較喜歡”粽子的人數之和;
(3)小軍最愛吃肉餡粽子,小麗最愛吃糖餡粽子.某天小霞帶了重量、外包裝完全一樣的肉餡、糖餡、棗餡、海鮮餡四種粽子各一只,讓小軍、小麗每人各選一只.請用樹狀圖或列表法求小軍、小麗兩人中有且只有一人選中自己最愛吃的粽子的概率.

查看答案和解析>>

同步練習冊答案