如圖,□ABCD中,O是對角線BD的中點,過點O的直線分別交AD、BC于E、F兩點,求證:(1) △DOE≌△BOF;(2) AE=CF.
見解析

試題分析:證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC.
∴∠EDO=∠FBO.
∵OB=OD,∠DOE=∠BOF,
∴△DOE≌△BOF.
∴DE=BF.∴AE=CF.
點評:本類試題屬于綜合性試題,看似簡單,實際考察的知識點星羅棋布,既有平行四邊形的性質(zhì),又由等邊三角形的性質(zhì)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,為矩形的對角線的交點,,。

⑴試判斷四邊形的形狀,并說明理由;(8分)
⑵若,,求四邊形的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,平行四邊形ABCD的對角線相交于點O,AO=4,OD=7,△DBC的周長比△ABC的周長(    )
A.長6B.短6C.短3D.長3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在菱形ABCD中,對角線AC、BD相交于點O,AC=12,BD=16,E為AD中點,點P在軸上移動.小明同學(xué)寫出了兩個使△POE為等腰三角形的P點坐標(,)和(,).請你寫出其余所有符合這個條件的P點坐標                 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,所有陰影部分四邊形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面積依次為2、4、3,則正方形D的面積為___________.
   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在平行四邊形ABCD中,AC⊥CD,對角線相交于點O, AO=6,BO=10,則AD=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知正方形ABCD的邊長為2,如果將線 段BD繞著點B旋轉(zhuǎn)后,點D落在CB的延長線 上的D'處,那么A D'為
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在一個四邊形ABCD中,依次連接各邊的中點得到的四邊形是菱形, 則對角線AC與BD需要滿足條件是  
A.垂直B.相等C.垂直且相等D.不再需要條件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,AD // BC,∠B=90°,AD=24cm,BC=26cm,動點P從A點開始沿AD邊向D以3cm/s的速度運動,動點Q從點C開始沿CB邊向點B以1cm/s的速度運動,點P、Q分別從A、C同時出發(fā),設(shè)運動時間為t (s).
⑴當(dāng)其中一點到達端點時,另一點也隨之停止運動.
①當(dāng)t為何值時,以CD、PQ為兩邊,以梯形的底(AD或BC)的一部分(或全部)為第三邊能構(gòu)成一個三角形;②當(dāng)t為何值時,四邊形PQCD為等腰梯形.
⑵若點P從點A開始沿射線AD運動,當(dāng)點Q到達點B時,點P也隨之停止運動.當(dāng)t為何值時,以P、Q、C、D為頂點的四邊形是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案