【題目】已知關(guān)于x的方程x2+ax+a﹣2=0.
(1)若該方程的一個(gè)根為2,求a的值及該方程的另一根.
(2)求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.

【答案】
(1)解:設(shè)方程的另一根為t,

根據(jù)題意得2+t=﹣a,2t=a﹣2,

所以2+t+2t=﹣2,解得t=﹣ ,

所以a=﹣


(2)證明:△=a2﹣4(a﹣2)

=a2﹣4a+8

=(a﹣2)2+4,

∴△>0,

∴不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.


【解析】(1)解:設(shè)方程的另一根為t,利用根與系數(shù)的關(guān)系得到2+t=﹣a,2t=a﹣2,然后通過(guò)解方程組可得到a和t的值;(2)先計(jì)算判別式的值得到△=a2﹣4(a﹣2)=(a﹣2)2+4,然后利用非負(fù)數(shù)的性質(zhì)得到△>0,則根據(jù)判別式的意義可判斷不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.
【考點(diǎn)精析】本題主要考查了求根公式和根與系數(shù)的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根;一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線AB: 交y軸于點(diǎn)A,交x軸于點(diǎn)B,過(guò)點(diǎn)E(2,0)作x軸的垂線EF交AB于點(diǎn)D,點(diǎn)P是垂線EF上一點(diǎn),且S△ADP=2,以PB為邊在第一象限作等腰Rt△BPC,則點(diǎn)C的坐標(biāo)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, OAB與ODC是位似圖形 。

試問(wèn):(1)AB與CD平行嗎?請(qǐng)說(shuō)明理由 。

(2)如果OB=3,OC=4,OD=3.5.試求OAB與ODC的相似比及OA的長(zhǎng) 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在數(shù)學(xué)課中學(xué)習(xí)了《解直角三角形》的內(nèi)容后,雙休日組織教學(xué)興趣小組的小伙伴進(jìn)行實(shí)地測(cè)量.如圖,他們?cè)谄露仁莍=1:2.5的斜坡DE的D處,測(cè)得樓頂?shù)囊苿?dòng)通訊基站鐵塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根據(jù)所學(xué)知識(shí)很快計(jì)算出了鐵塔高AM.親愛(ài)的同學(xué)們,相信你也能計(jì)算出鐵塔AM的高度!請(qǐng)你寫出解答過(guò)程.(數(shù)據(jù) ≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于實(shí)數(shù)、我們定義一種新運(yùn)算(其中均為非零常數(shù)).等式右邊是通常的四則運(yùn)算.由這種運(yùn)算得到的數(shù)我們稱之為線性數(shù),記為,其中、叫做線性數(shù)的一個(gè)數(shù)對(duì).若實(shí)數(shù)都取正整數(shù),我們稱這樣的線性數(shù)為正格線性數(shù),這時(shí)的、叫做正格線性數(shù)的正格數(shù)對(duì).

(1)若,則 .

(2)已知,若正格線性數(shù),求滿足不等式組的所有的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12)如圖1,已知Rt△ABC,AB=BC,AC=2,把一塊含30°角的三角板DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上(直角三角板的短直角邊為DE,長(zhǎng)直角邊為DF),點(diǎn)CDE點(diǎn)BDF上.

(1)求重疊部分△BCD的面積;

(2)如圖2,將直角三角板DEFD點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)30,DEBC于點(diǎn)M,DFAB于點(diǎn)N.

求證:DM=DN;

在此條件下重疊部分的面積會(huì)發(fā)生變化嗎?若發(fā)生變化請(qǐng)求出重疊部分的面積,若不發(fā)生變化,請(qǐng)說(shuō)明理由;

(3)如圖3,將直角三角板DEFD點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)α(0<α<90),DEBC于點(diǎn)M,DFAB于點(diǎn)N,DM=DN的結(jié)論仍成立嗎?重疊部分的面積會(huì)變嗎?(請(qǐng)直接寫出結(jié)論,不需要說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3

(1)觀察每次變換前后的三角形的變化規(guī)律,若將△OA3B3變換成△OA4B4,則A4的坐標(biāo)是__,B4的坐標(biāo)是__;

(2)若按第(1)題找到的規(guī)律將△OAB進(jìn)行n次變換,得到△OAnBn,比較每次變換中三角形頂點(diǎn)坐標(biāo)有何變化,找出規(guī)律,推測(cè)An的坐標(biāo)是__,Bn的坐標(biāo)是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)將組織七年級(jí)學(xué)生春游一天由王老師和甲、乙兩同學(xué)到客車租賃公司洽談租車事宜

1兩同學(xué)向公司經(jīng)理了解租車的價(jià)格,公司經(jīng)理對(duì)他們說(shuō)公司有45座和60座兩種型號(hào)的客車可供租用60座的客車每輛每天的租金比45座的貴100元王老師說(shuō)我們學(xué)校八年級(jí)昨天在這個(gè)公司租了5輛45座和2輛60座的客車,一天的租金為1600元你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學(xué)想了一下,都說(shuō)知道了價(jià)格

聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

2公司經(jīng)理問(wèn)你們準(zhǔn)備怎樣租車,甲同學(xué)說(shuō)我的方案是只租用45座的客車,可是會(huì)有一輛客車空出30個(gè)座位乙同學(xué)說(shuō)我的方案只租用60座客車,正好坐滿且比甲同學(xué)的方案少用兩輛客車王老師在旁聽(tīng)了他們的談話說(shuō)從經(jīng)濟(jì)角度考慮,還有別的方案嗎?如果是你,你該如何設(shè)計(jì)租車方案,并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】本學(xué)期開學(xué)前夕,某文具店用4000元購(gòu)進(jìn)若干書包,很快售完,接著又用4500元購(gòu)進(jìn)第二批書包,已知第二批所購(gòu)進(jìn)書包的只數(shù)是第一批所購(gòu)進(jìn)書包的只數(shù)的1.5倍,且每只書包的進(jìn)價(jià)比第一批的進(jìn)價(jià)少5元,求第一批書包每只的進(jìn)價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案