【題目】如圖,在邊長為2的等邊△ABC中,D為BC的中點(diǎn),E是AC邊上一點(diǎn),則BE+DE的最小值為 .
【答案】.
【解析】
試題分析:作B關(guān)于AC的對稱點(diǎn)B′,連接BB′、B′D,交AC于E,此時BE+ED=B′E+ED=B′D,根據(jù)兩點(diǎn)之間線段最短可知B′D就是BE+ED的最小值,∵B、B′關(guān)于AC的對稱,∴AC、BB′互相垂直平分,∴四邊形ABCB′是平行四邊形,∵三角形ABC是邊長為2,∵D為BC的中點(diǎn),∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=,作B′G⊥BC的延長線于G,∴B′G=AD=,
在Rt△B′BG中,BG===3,∴DG=BG﹣BD=3﹣1=2,
在Rt△B′DG中,BD===.故BE+ED的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
“共享單車”是指企業(yè)與政府合作,在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車共享的一種服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).共享單車的出現(xiàn)讓更多的用戶有了更好的代步選擇.自行車也代替了一部分公共交通甚至打車的出行.
Quest Mobile監(jiān)測的M型與O型單車從2016年10月——2017年1月的月度用戶使用情況如下表所示:
根據(jù)以上材料解答下列問題:
(1)仔細(xì)閱讀上表,將O型單車總用戶數(shù)用折線圖表示出來,并在圖中標(biāo)明相應(yīng)數(shù)據(jù);
(2)根據(jù)圖表所提提供的數(shù)據(jù),選擇你所感興趣的方面,寫出一條你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)P在x軸上,若以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列各式的計算中,正確的是( )
A.a2+a3=a5
B.2a(a+1)=2a2+2a
C.(ab3)2=a2b5
D.(y﹣2x)(y+2x)=y2﹣2x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)為(1,4)的拋物線與直線交于點(diǎn)A(2,2),直線與軸交于點(diǎn)B與軸交于點(diǎn)C
(1)求的值及拋物線的解析式
(2)P為拋物線上的點(diǎn),點(diǎn)P關(guān)于直線AB的對稱軸點(diǎn)在軸上,求點(diǎn)P的坐標(biāo)
(3)點(diǎn)D為軸上方拋物線上的一點(diǎn),點(diǎn)E為軸上一點(diǎn),以A 、B、E、D為頂點(diǎn)的四邊為平行四邊形時,直接寫出點(diǎn)E的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知同一平面內(nèi),∠AOB=90゜,∠AOC=60゜.
(1)填空:∠COB=;
(2)如OD平分∠BOC,OE平分∠AOC,直接寫出∠DOE的度數(shù)為;
(3)試問在(2)的條件下,如果將題目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他條件不變,你能求出∠DOE的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com