【題目】如圖所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求圖中半圓的面積.
【答案】解:如圖,∵在直角△ABO中,∠B=90°,BO=3cm,AB=4cm,
∴AO= =5cm.
則在直角△AFO中,由勾股定理得到:FO= =13cm,
∴圖中半圓的面積= π×( )2= π× = (cm2).
答:圖中半圓的面積是 cm2 .
【解析】首先,在直角△ABO中,利用勾股定理求得AO=5cm;然后在直角△AFO中,由勾股定理求得斜邊FO的長度;最后根據(jù)圓形的面積公式進(jìn)行解答.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是正方體的展開圖,則原正方體相對(duì)兩個(gè)面上的數(shù)字之和的最小值是( )
A.3
B.6
C.7
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、D、E、F為⊙O的六等分點(diǎn),動(dòng)點(diǎn)P從圓心O出發(fā),沿OE弧EFFO的路線做勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t,∠BPD的度數(shù)為y,則下列圖象中表示y與t之間函數(shù)關(guān)系最恰當(dāng)?shù)氖牵?)
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若點(diǎn)P(a,b)在函數(shù)y=的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=的一個(gè)“派生函數(shù)”.例如:點(diǎn)(2, )在函數(shù)y=的圖象上,則函數(shù)y=2x2+ 稱為函數(shù)y=的一個(gè)“派生函數(shù)”.現(xiàn)給出以下兩個(gè)命題:
(1)存在函數(shù)y=的一個(gè)“派生函數(shù)”,其圖象的對(duì)稱軸在y軸的右側(cè)
(2)函數(shù)y=的所有“派生函數(shù)”的圖象都經(jīng)過同一點(diǎn),下列判斷正確的是( 。
A. 命題(1)與命題(2)都是真命題
B. 命題(1)與命題(2)都是假命題
C. 命題(1)是假命題,命題(2)是真命題
D. 命題(1)是真命題,命題(2)是假命題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn)50°得△A1B1C1(A、B分別對(duì)應(yīng)A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程2x2+3x+1=0的根的情況是( )
A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.沒有實(shí)數(shù)根
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB=BC=CD=DA,∠A=∠B=∠BCD=∠ADC=90°,點(diǎn)E是AB上一點(diǎn),點(diǎn)F是AD延長線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)在圖1中,如果點(diǎn)G在AD上,且∠GCE=45°,那么EG=BE+DG是否成立,請(qǐng)說明理由.
(3)運(yùn)用(1)、(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:如圖2,AD∥BC(BC>AD),∠B=90°,AB=BC=12,點(diǎn)E是AB上一點(diǎn),且∠DCE=45°,BE=4,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com