精英家教網 > 初中數學 > 題目詳情

如圖,直線l與x軸、y軸的正半軸分別交于A、B兩點,OA、OB的長分別是關于x的方程x2﹣14x+4(AB+2)=0的兩個根(OB>OA),P是直線l上A、B兩點之間的一動點(不與A、B重合),PQ∥OB交OA于點Q
【小題1】求tan∠BAO的值
【小題2】若SPAQ=S四邊形OQPB時,請確定點P在AB上的位置,并求出線段PQ的長;
【小題3】當點P在線段AB上運動時,在y軸上是否存在點M,使△MPQ為等腰直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.


【小題1】由已知可得,
又∵OA2+OB2=AB2
∴(OA+OB)2﹣2OA•OB=AB2,
即142﹣8(AB+2)=AB2
∴AB2+8AB﹣180=0,
∴AB=10或AB=﹣18(不合題意,舍去),
∴AB=10,
∴x2﹣14x+48=0,
解得x1=6,x2=8,
∵OB>OA,∴OA=6,OB=8,
∴tan∠BAO=. (5分)
【小題2】∵SPAQ=S四邊形OQPB
∴SPAQ=SAOB,
∵PQ∥BO,
∴△PQA∽△BOA,
,
.∵AB=10,
∴AP=5,
又∵tan∠BAO=,
∴sin∠BAO=,
∴PQ=PA•sin∠BAO=.(5分)
【小題3】存在,
M點的坐標分別為M1(0,0)、M2(0,)、M3(0,).(2分)

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,直線m與x軸、y軸分別交于點B,A,且A,B兩點的坐標分別為A(0,3),B(4,0).
(1)請求出直線m的函數解析式;
(2)在x軸上是否存在這樣的點C,使△ABC為等腰三角形?請求出點C的坐標(不需要具體過程),并在坐標系中標出點C的大致位置.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖①,直線AB與x軸負半軸、y軸正半軸分別交于A、B兩點.OA、OB的長度分別為a和b,且滿足a2-2ab+b2=0.
(1)判斷△AOB的形狀.
(2)如圖②,正比例函數y=kx(k<0)的圖象與直線AB交于點Q,過A、B兩點分別作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的長.
(3)如圖③,E為AB上一動點,以AE為斜邊作等腰直角△ADE,P為BE的中點,連接PD、PO,試問:線段PD、PO是否存在某種確定的數量關系和位置關系?寫出你的結論并證明.
精英家教網精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,直線l與x軸、y軸分別交于點M(8,0),點N(0,6).點P從點N出發(fā),以每秒1個單位長度的速度沿N?O方向運動,點Q從點O出發(fā),以每秒2個單位長度的速度沿O→M的方向運動.已知點P、Q同時出發(fā),當點Q達點M時,P、Q兩精英家教網點同時停止運動,設運動時間為t秒.
(1)設四邊形MNPQ的面積為S,求S關于t的函數關系式,并寫出t的取值范圍.
(2)當t為何值時,PQ與l平行.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:如圖,直線AB與x軸交于點A,與y軸交于點B.
(1)寫出A,B兩點的坐標;(2)求直線AB的函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

9、如圖,直線AB與x軸相交于點A(1,0),則直線AB繞點A旋轉90°后所得到的直線解析式可能是( 。

查看答案和解析>>

同步練習冊答案