△ABC的兩個(gè)邊長(zhǎng)為1,
2
.要使△ABC是直角三角形,則第三邊為
1或
3
1或
3
分析:利用勾股定理求得第三邊即可,注意分兩種情況討論.
解答:解:∵直角三角形ABC的兩邊為1,
2
,
∴第三邊為:
12+(
2
)
2
=
3

(
2
)
2
-12
=1
故答案為1或
3
點(diǎn)評(píng):本題考查了直角三角形的性質(zhì),解題的關(guān)鍵是分兩種情況討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、已知△ABC為等腰三角形,①當(dāng)它的兩個(gè)邊長(zhǎng)分別為8cm和3cm時(shí),它的周長(zhǎng)為
19
cm;②如果它的周長(zhǎng)為18cm,一邊的長(zhǎng)為4cm,則腰長(zhǎng)為
7
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱“無(wú)字證明”,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c),大正方形的面積可以表示為c2,也可以表示為
1
2
ab+(a-b)2
由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長(zhǎng)為a,b,斜邊長(zhǎng)為c,則a2+b2=c2.圖②為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你利用圖②推導(dǎo)勾股定理.

(2)試用勾股定理解決以下問(wèn)題:
如果直角三角形ABC的兩直角邊長(zhǎng)為3和4,則斜邊上的高為
12
5
12
5

(3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋(a-2b)2=a2-4ab+4b2,畫在下面的網(wǎng)格中,并標(biāo)出字母a、b所表示的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱“無(wú)字證明”,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c),大正方形的面積可以表示為c2,也可以表示為數(shù)學(xué)公式由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長(zhǎng)為a,b,斜邊長(zhǎng)為c,則a2+b2=c2.圖②為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你利用圖②推導(dǎo)勾股定理.

(2)試用勾股定理解決以下問(wèn)題:
如果直角三角形ABC的兩直角邊長(zhǎng)為3和4,則斜邊上的高為_(kāi)_____
(3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋(a-2b)2=a2-4ab+4b2,畫在下面的網(wǎng)格中,并標(biāo)出字母a、b所表示的線段.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26.(1)教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱“無(wú)字證明”,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c),大正方形的面積可以表示為c2,也可以表示為由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長(zhǎng)為a,b,斜邊長(zhǎng)為c,則a2+b2=c2.圖②為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你利用圖②推導(dǎo)勾股定理.

(2)試用勾股定理解決以下問(wèn)題:

如果直角三角形ABC的兩直角邊長(zhǎng)為3和4,則斜邊上的高為  

(3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋(a﹣2b)2=a2﹣4ab+4b2,畫在下面的網(wǎng)格中,并標(biāo)出字母a、b所表示的線段.

查看答案和解析>>

同步練習(xí)冊(cè)答案