【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,某市采用價(jià)格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來(lái)水收費(fèi)的價(jià)目表如下(注:水費(fèi)按月份結(jié)算,表示立方米)
請(qǐng)根據(jù)上表的內(nèi)容解答下列問(wèn)題:
(1)填空:若該戶居民2月份用水5m3,則應(yīng)交水費(fèi) 元;3月份用水8m3,則應(yīng)收水費(fèi) 元;
(2)若該戶居民4月份用水am3(其中a>10m3),則應(yīng)交水費(fèi)多少元(用含a的代數(shù)式表示,并化簡(jiǎn))?
(3)若該戶居民5、6兩個(gè)月共用水14m3(6月份用水量超過(guò)了5月份),設(shè)5月份用水xm3,直接寫(xiě)出該戶居民5、6兩個(gè)月共交水費(fèi)多少元(用含x的代數(shù)式表示).
【答案】(1)10,20;(2)8a﹣52;(3)當(dāng)6<x<7,該戶居民5、6兩個(gè)月共交水費(fèi)32元;當(dāng)4≤x≤6時(shí),該戶居民5、6兩個(gè)月共交水費(fèi)(﹣2x+68)元;當(dāng)0≤x<4時(shí),該戶居民5、6兩個(gè)月共交水費(fèi)(140﹣6x)元
【解析】
(1)根據(jù)題意,可以計(jì)算出該居民二月份和三月份的水費(fèi);
(2)根據(jù)題意,可以用a的代數(shù)式表示出4月份的水費(fèi);
(3)根據(jù)題意,利用分類(lèi)討論的方法可以解答本題.
解:(1)由表格可得,
若該戶居民2月份用水5m3,則應(yīng)交水費(fèi):2×5=10(元),
3月份用水8m3,則應(yīng)收水費(fèi):2×6+4×(8﹣6)=12+4×2=12+8=20(元),
故答案為:10,20;
(2)由表格可得,
該戶居民4月份用水am3(其中a>10m3),則應(yīng)交水費(fèi):2×6+4×(10﹣6)+8(a﹣10)=(8a﹣52)元,
答:應(yīng)交水費(fèi)(8a﹣52)元;
(3)由題意可得,
x<14﹣x,得x<7,
當(dāng)6<x<7,該戶居民5、6兩個(gè)月共交水費(fèi):[2×6+(x﹣6)×4]+[2×6+(14﹣x﹣6)×4]=32(元),
當(dāng)4≤x≤6時(shí),該戶居民5、6兩個(gè)月共交水費(fèi):2x+[2×6+(14﹣x)×4]=(﹣2x+68)(元),
當(dāng)0≤x<4時(shí),該戶居民5、6兩個(gè)月共交水費(fèi):2x+[2×6+(10﹣6)×4+(14﹣x)×8]=(140﹣6x)(元).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,奠定了中國(guó)傳統(tǒng)數(shù)學(xué)的基本框架.它的代數(shù)成就主要包括開(kāi)方術(shù)、正負(fù)術(shù)和方程術(shù).其中,方程術(shù)是《九章算術(shù)》最高的數(shù)學(xué)成就.《九2x=﹣6章算術(shù)》中記載:“今有人共買(mǎi)雞,人出九,盈十一;人出六,不足十六.問(wèn)人數(shù)、雞價(jià)各幾何?”
譯文:“假設(shè)有幾個(gè)人共同出錢(qián)買(mǎi)雞,如果每人出九錢(qián),那么多了十一錢(qián);如果每人出六錢(qián),那么少了十六錢(qián).問(wèn):有幾個(gè)人共同出錢(qián)買(mǎi)雞?雞的價(jià)錢(qián)是多少?”設(shè)有x個(gè)人共同買(mǎi)雞,根據(jù)題意列一元一次方程,正確的是( )
A. 9x+11=6x﹣16B. 9x﹣11=6x+16
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是BC邊的中線,過(guò)點(diǎn)A作BC的平行線,過(guò)點(diǎn)B作AD的平行線,兩線交于點(diǎn)E.
(1)求證:四邊形ADBE是矩形;
(2)連接DE,交AB與點(diǎn)O,若BC=8,AO=3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)公司有甲、乙兩種貨車(chē)可供租用,現(xiàn)有一批貨物要運(yùn)往某地,貨主準(zhǔn)備租用該公司貨車(chē),已知以往甲、乙兩種貨車(chē)運(yùn)貨情況如下表:
(1)甲、乙兩種貨車(chē)每輛可裝多少?lài)嵷浳铮?/span>
(2)若貨主需要租用該公司的甲種貨車(chē)8輛,乙種貨車(chē)6輛,剛好運(yùn)完這批貨物,如按每噸付運(yùn)費(fèi)50元,則貨主應(yīng)付運(yùn)費(fèi)總額為多少元?
(3)若貨主共有20噸貨,計(jì)劃租用該公司的貨車(chē)正好(每輛車(chē)都滿載)把這批貨運(yùn)完,該汽車(chē)公司共有哪幾種運(yùn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、點(diǎn)C分別在y軸、x軸的正半軸上,OA,OC的長(zhǎng)分別是方程x2-7x+12=0的兩根(OA<OC).P為直線AB上一動(dòng)點(diǎn),直線PQ⊥OP交直線BC于點(diǎn)Q.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)(不與A,B重合)時(shí),設(shè)點(diǎn)P的橫坐標(biāo)為m,線段CQ的長(zhǎng)度為l.求出l關(guān)于m的函數(shù)解析式;
(3)在坐標(biāo)平面內(nèi)是否存在點(diǎn)D,使以O、P、Q、D為頂點(diǎn)的四邊形為正方形?若存在,請(qǐng)直接寫(xiě)出D點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017山東省萊蕪市)如圖,在矩形ABCD中,BE⊥AC分別交AC、AD于點(diǎn)F、E,若AD=1,AB=CF,則AE=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,線段AB上有兩個(gè)點(diǎn)C、D,請(qǐng)計(jì)算圖中共有多少條線段?
(2)如果線段上有m個(gè)點(diǎn)(包括線段的兩個(gè)端點(diǎn)),則該線段上共有多少條線段?
(3)拓展應(yīng)用:8個(gè)班級(jí)參加學(xué)校組織的籃球比賽,比賽采用單循環(huán)制(即每?jī)蓚(gè)班級(jí)之間都要進(jìn)行一場(chǎng)比賽),那么一共要進(jìn)行多少場(chǎng)比賽?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,BD=CE,將線段AE沿AC翻折,得到線段AM,連結(jié)EM交AC于點(diǎn)N,連結(jié)DM、CM以下說(shuō)法:①AD=AM,②∠MCA=60°,③CM=2CN,④MA=DM中,正確的有( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD是正方形,點(diǎn)E、F分別在線段BC、DC上,∠BAE=30°.若線段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后與線段AF重合,則旋轉(zhuǎn)的角度是( 。
A.30°B.45°C.60°D.90°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com