【題目】如圖所示的拋物線是二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列結(jié)論:①abc>0;②2a+b=0;③拋物線與x軸的另一個交點為(4,0);④c+a>b;⑤3a+c<0.其中正確的結(jié)論有______
【答案】①②③⑤
【解析】
由開口方向、與y軸交于負半軸以及對稱軸的位置,即可確定a,b,c的正負;由對稱軸x=- =1,可得b+2a=0;由拋物線與x軸的一個交點為(-2,0),對稱軸為:x=1,可得拋物線與x軸的另一個交點為(4,0);當x=-1時,y=a-b+c<0;a-b+c<0,b+2a=0,即可得3a+c<0.
∵開口向上,
∴a>0,
∵與y軸交于負半軸,
∴c<0,
∵對稱軸x=>0,
∴b<0,
∴abc>0;
故①正確;
∵對稱軸x==1,
∴b+2a=0;
故②正確;
∵拋物線與x軸的一個交點為(2,0),對稱軸為:x=1,
∴拋物線與x軸的另一個交點為(4,0);
故③正確;
∵當x=1時,y=ab+c<0,
∴a+c<b,
故④錯誤;
∵ab+c<0,b+2a=0,
∴3a+c<0;
故⑤正確。
故答案為:①②③⑤
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的頂點A、D分別在x軸、y軸的正半軸上,若反比例函數(shù)y=(x>0)的圖象經(jīng)過另外兩個頂點B、C,且點B(6,n),(0<n<6),則k的值為( 。
A. 18B. 12C. 6D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=8,AC與BD交于點O,N是AO的中點,點M在BC邊上,且BM=6. P為對角線BD上一點,則PM—PN的最大值為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,∠A=60°,點P和點Q分別從點B和點C出發(fā),沿射線BC向右運動并且始終保持BP=CQ,過點Q作QH⊥BD,垂足為H,連接PH,設(shè)點P運動的距離為x(0<x≤2),△BPH的面積為s,則能反映s與x之間的函數(shù)關(guān)系的圖象大致為 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著長株潭一體化進程不斷推進,湘潭在交通方面越來越讓人期待.將要實施的“兩干一軌”項目中的“一軌”,是將長沙市地鐵3號線南延至湘潭北站,往返長潭兩地又將多“地鐵”這一選擇.為了解人們選擇交通工具的意愿,隨機抽取了部分市民進行調(diào)查,并根據(jù)調(diào)查結(jié)果繪制如下統(tǒng)計圖,關(guān)于交通工具選擇的人數(shù)數(shù)據(jù),以下結(jié)論正確的是( 。
A. 平均數(shù)是8B. 眾數(shù)是11C. 中位數(shù)是2D. 極差是10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,菱形ABCD的頂點B在x軸的正半軸上,點A坐標為(-4,0),點D的坐標為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點C,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校調(diào)查了若干名家長對“初中生帶手機上學”現(xiàn)象的看法,統(tǒng)計整理并制作了如下的條形與扇形統(tǒng)計圖,根據(jù)圖中提供的信息,完成以下問題:
(1)本次共調(diào)查了 名家長,扇形統(tǒng)計圖中“很贊同”所對應(yīng)的圓心角度數(shù)是 度,并補全條形統(tǒng)計圖.
(2)該校共有3600名家長,通過計算估計其中“不贊同”的家長有多少名?
(3)從“不贊同”的五位家長中(兩女三男),隨機選取兩位家長對全校家長進行“學生使用手機危害性”的專題講座,請用樹狀圖或列表法求出選中“1男1女”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com