【題目】如圖所示,一條自西向東的觀光大道l上有A、B兩個景點,A、B相距2km,在A處測得另一景點C位于點A的北偏東60°方向,在B處測得景點C位于景點B的北偏東45°方向,求景點C到觀光大道l的距離.(結果精確到0.1km)
科目:初中數(shù)學 來源: 題型:
【題目】(感知)如圖①,AB∥CD,點E在直線AB與CD之間,連結AE、BE,試說明∠BAE+∠DCE=∠AEC;
(探究)當點E在如圖②的位置時,其他條件不變,試說明∠AEC+∠BAE+∠DCE=360°;
(應用)點E、F、G在直線AB與CD之間,連結AE、EF、FG和CG,其他條件不變,如圖③,若∠EFG=36°,則∠BAE+∠AEF+∠FGC+∠DCG=______°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】共享單車被譽為“新四大發(fā)明”之一,如圖1所示是某公司2017年向信陽市場提供一種共享自行車的實物圖,車架檔AC與CD的長分別為45cm,60cm,AC⊥CD,座桿CE的長為20cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車架檔AD的長;
(2)求車座點E到車架檔AB的距離.(結果精確到1cm,參考數(shù)據(jù):sin75°=0.9659,cos75°=0.2588,tan75°=3.7321)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為直線AB上一點,∠BOC=36°.
(1)若OD平分∠AOC,∠DOE=90°,如圖(a)所示,求∠AOE的度數(shù):
(2)若∠AOD=∠AOC,∠DOE=60°,如圖(b)所示,求∠AOE的度數(shù):
(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n為正整數(shù)),如圖(c)所示,請用n含的代數(shù)式表示∠AOE的度數(shù)__________(直接寫出結果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°.
(1)作∠B的平分線BD,交AC于點D;
(2)作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明);
(3)連接DE,求證:△ADE≌△BDE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD是直角梯形,AB=18cm,CD=15cm,AD=6cm,點P從B點開始,沿BA邊向點A以1cm/s的速度移動,點Q從D點開始,沿DC邊向點C以2cm/s的速度移動,如果P、Q分別從B、D同時出發(fā),P、Q有一點到達終點時運動停止,設移動時間為t.
(1)t為何值時四邊形PQCB是平行四邊形?
(2)t為何值時四邊形PQCB是矩形?
(3)t為何值時四邊形PQCB是等腰梯形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OB為∠AOC的平分線,OD是∠COE的平分線.
(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD為多少度?
(2)如果∠AOE=140°,∠COD=30°,那么∠AOB為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的邊AB=3cm,AD=4cm,點E從點A出發(fā),沿射線AD移動,以CE為直徑作圓O,點F為圓O與射線BD的公共點,連接EF、CF,過點E作EG⊥EF,EG與圓O相交于點G,連接CG.
(1)試說明四邊形EFCG是矩形;
(2)當圓O與射線BD相切時,點E停止移動,在點E移動的過程中,
①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個最大值或最小值;若不存在,說明理由;
②求點G移動路線的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(m≠0)的圖象在第一象限內(nèi)交于A(1,6),B(3,n)兩點.
(1)求這兩個函數(shù)的表達式;
(2)根據(jù)圖象直接寫出kx+b﹣<0的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com