【題目】如圖(圖1),在△ABC中,∠B45°,點P從△ABC的頂點出發(fā),沿ABC勻速運動到點C,(圖2)是點P運動時,線段AP的長度y隨時間x變化的關(guān)系圖象,其中M,N為曲線部分的兩個端點,則△ABC的周長是_____

【答案】24+8

【解析】

根據(jù)P點在AB段、BC段運動時,AP長度的變化,結(jié)合圖2中的圖象分析出ABAC長,借助45°,作AHBC,構(gòu)造出兩個直角三角形,利用勾股定理可求BC段長度.則三角形的周長可求

解:

當(dāng)P點從AB運動時,AP逐漸增大,當(dāng)P點到B點時,AP最大為AB長,從圖2的圖象可以看出AB8;

當(dāng)P點從BC運動時,AP先逐漸減小而后逐漸增大,到C點時AP最大為AC長,從圖2的圖象可以看出AC10

A點作AH⊥BCH點,∵∠B45°,∴AHBHAB8

Rt△ACH中,6

∴BC8+614

所以△ABC的周長為8+10+1424+8

故答案為24+8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為在中小學(xué)生中普及交通法規(guī)常識,倡導(dǎo)安全出行,某市教育局在全市范圍內(nèi)組織七年級學(xué)生進行了一次“交規(guī)記心間”知識競賽.為了解市七年級學(xué)生的竟賽成績,隨機抽取了若干名學(xué)生的競賽成績(成績?yōu)檎麛?shù),滿分100分),進行統(tǒng)計后,繪制出如下頻數(shù)分布表和如圖所示的頻數(shù)分布直方圖(頻數(shù)分布直方圖中有一處錯誤).

組別(單位:分)

頻數(shù)

頻率

50.560.5

20

0.1

60.570.5

40

0.2

70.580.5

70

b

80.590.5

a

0.3

90.5100.5

10

0.05

請根據(jù)圖表信息回答下列問題:

1)在頻數(shù)分布表中,a   b   

2)指出頻數(shù)分布直方圖中的錯誤,并在圖上改正;

3)甲同學(xué)說:“我的成績是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù)”,問:甲同學(xué)的成績應(yīng)在什么范圍?

4)全市共有5000名七年級學(xué)生,若規(guī)定成績在80分以上(不含80分)為優(yōu)秀,估計這次競賽中成績?yōu)閮?yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年四川綿陽12分)如圖,已知矩形OABC中,OA=2,AB=4,雙曲線k0)與矩形兩邊ABBC分別交于E、F

1)若EAB的中點,求F點的坐標(biāo);

2)若將△BEF沿直線EF對折,B點落在x軸上的D點,作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線過點和點,且頂點在第三象限,設(shè),則的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司用100萬元研發(fā)一種市場急需電子產(chǎn)品,已于當(dāng)年投入生產(chǎn)并銷售,已知生產(chǎn)這種電子產(chǎn)品的成本為4/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量y(萬件)與銷售價格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,設(shè)公司銷售這種電子產(chǎn)品的年利潤為s(萬元).

1)請求出y(萬件)與x(元/件)的函數(shù)表達式;

2)求出第一年這種電子產(chǎn)品的年利潤s(萬元)與x(元/件)的函數(shù)表達式,并求出第一年年利潤的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明要測量河內(nèi)小島B到河邊公路AD的距離,在點A處測得∠BAD=37°,沿AD方向前進150米到達點C,測得∠BCD=45°. 求小島B到河邊公路AD的距離.

(參考數(shù)據(jù):sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB與⊙O相切于點C,OA=OB,O的直徑為6 cm,AB=6 cm,則陰影部分的面積為( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·孝感)學(xué)生甲與學(xué)生乙玩一種轉(zhuǎn)盤游戲.如圖是兩個完全相同的轉(zhuǎn)盤,每個轉(zhuǎn)盤被分成面積相等的四個區(qū)域,分別用數(shù)字1、23、4表示.固定指針,同時轉(zhuǎn)動兩個轉(zhuǎn)盤,任其自由停止,若兩指針?biāo)笖?shù)字的積為奇數(shù),則甲獲勝;若兩指針?biāo)笖?shù)字的積為偶數(shù),則乙獲勝;若指針指向扇形的分界線,則都重轉(zhuǎn)一次.在該游戲中乙獲勝的概率是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,已知點A(﹣3,﹣3),點B(﹣1,﹣3),點C(﹣1,﹣1

1)畫出△ABC;

2)以點C為旋轉(zhuǎn)中心,畫出將△ABC順時針旋轉(zhuǎn)90度的△A1B1C,并求出線段CA掃過的面積;

3)以O為位似中心,在第一象限內(nèi)作出△A2B2C2使△A2B2C2與△ABC位似,且位似比為2,并寫出A2點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案