【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點,過點A軸于點B,連結(jié)

1)求k的值;

2)如圖,若直線經(jīng)過點A,與x軸相交于點C,且滿足.求:

①直線的表達(dá)式;

②記直線與雙曲線的另一交點為,試求的面積

【答案】1;(2直線的表達(dá)式為,

【解析】

1)由點A的坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征即可求出k值;

2)①根據(jù)可得出OB=OC,再由點A的坐標(biāo)即可得出點B、C的坐標(biāo),結(jié)合點A、C的坐標(biāo)利用待定系數(shù)法即可求出直線AC的表達(dá)式;

②根據(jù)點D的縱坐標(biāo)即可求出點D的坐標(biāo),結(jié)合三角形的面積公式可求出AOD的面積.

1)∵反比例函數(shù)的圖象經(jīng)過點,

2)①∵,

,

∵點

∴點,點

將點、代入中,

得:,解得:,

∴直線的表達(dá)式為

②連接,如圖所示.

∵點,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)

如圖,在ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點P;連接AP并延長交BC于點E,連接EF,則所得四邊形ABEF是菱形.

(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;

(2)若菱形ABEF的周長為16,AE=4,求C的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出了不同的優(yōu)惠方案:在甲超市累計購買商品超出300元后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元后,超出部分按原價8.5折優(yōu)惠.若顧客累計購買商品工(x> 300).

(1)請用含x的式子分別表示顧客在兩家超市購物應(yīng)付的費用;

(2)x= 500時,選擇哪家超市購物更優(yōu)惠?說明理由;

(3)x=1 000時,選擇哪家超市購物更優(yōu)惠?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,∠B的角平分線BEAD交于點E,BED的角平分線EFDC交于點F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是線段AB的中點,CEB上一點,AC12

1)若ECCB14,求AB的長;

2)若FCB的中點,求EF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCDEBC邊上一點,且AB=AE,AEDC的延長線相交于點F.

(1)若∠F=62°,求∠D的度數(shù);

(2)BE=3EC,且EFC的面積為1,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填入相應(yīng)集合的括號內(nèi)

+8.5, 0, -3.4 12, -9 , 3.1415, -1.2,

1)正數(shù)集合

2)整數(shù)集合

3)負(fù)分?jǐn)?shù)集合

4)非正整數(shù)集合{

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,ECD上一點,FBC延長線上一點,CE=CF.

(1)△DCF可以看作是△BCE繞點C旋轉(zhuǎn)某個角度得到的嗎?

(2)若∠CEB=60°,求∠EFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx2與拋物線yax2bx6(a≠0)相交于點A(, ),B(4,m),點P是線段AB上異于AB的動點,過點PPCx軸于點D,交拋物線于點C.

(1)求拋物線的解析式;

(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案