【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BCAC上,DEAB,過(guò)點(diǎn)EEFDE,交BC的延長(zhǎng)線于點(diǎn)F

1)求∠F的度數(shù);

2)若CD2,求DF、EF的長(zhǎng).

【答案】1)∠F30°;(2DF4EF2

【解析】

1)根據(jù)平行線的性質(zhì)可得EDC=∠B60°,根據(jù)三角形內(nèi)角和定理即可求解;

2)易證EDC是等邊三角形,再根據(jù)直角三角形的性質(zhì)即可求解.

解:(1)∵△ABC是等邊三角形,

∴∠B60°,

DEAB,

∴∠EDC=∠B60°,

EFDE,

∴∠DEF90°,

∴∠F90°﹣∠EDC30°;

2)∵∠ACB60°,∠EDC60°,

∴△EDC是等邊三角形.

EDDC2,

∵∠DEF90°,∠F30°,

DF2DE4,

EFDE2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位),在平面直角坐標(biāo)系內(nèi),△OBC的頂點(diǎn)B、C分別為B(0,﹣4),C(2,﹣4).

(1)請(qǐng)?jiān)趫D中標(biāo)出△OBC的外接圓的圓心P的位置,并填寫(xiě):圓心P的坐標(biāo)為 ;

(2)畫(huà)出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△OB1C1

(3)(2)的條件下,求出旋轉(zhuǎn)過(guò)程中點(diǎn)C所經(jīng)過(guò)分路徑長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,三角形內(nèi)接于為直徑,過(guò)點(diǎn)作直線,要使得的切線,還需添加的條件是(只需寫(xiě)出三種):①________或②________或③________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了增強(qiáng)學(xué)生體質(zhì),豐富學(xué)生的學(xué)習(xí)生活,某校設(shè)置室外活動(dòng)課,并決定購(gòu)買(mǎi)一些排球和跳繩.已知一個(gè)排球的費(fèi)用比3根跳繩的費(fèi)用少10元,2個(gè)排球與5根跳繩的總費(fèi)用為200元.

1)求每個(gè)排球和每根跳繩的價(jià)格分別為多少元;

2)該校現(xiàn)計(jì)劃購(gòu)買(mǎi)排球和跳繩110件,排球的數(shù)量不少于跳繩數(shù)量的,且用于購(gòu)買(mǎi)排球和跳繩的總費(fèi)用不超過(guò)3760元.請(qǐng)你通過(guò)計(jì)算求出該校有哪幾種購(gòu)買(mǎi)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是以為斜邊的等腰直角三角形,的中點(diǎn),點(diǎn)、分別為線段,上的一點(diǎn),為直角頂點(diǎn)的等腰直角三角形,,連結(jié)

1)當(dāng)與點(diǎn)重合時(shí),求的長(zhǎng).

2)當(dāng)時(shí),求的面積.

3)①比較的面積大小關(guān)系,并說(shuō)明理由.

②當(dāng)的面積為6時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形 ACDE 是證明勾股定理時(shí)用到的一個(gè)圖形,a 、b 、cRtABCRtBED 的邊長(zhǎng),已知,這時(shí)我們把關(guān)于 x 的形如二次方程稱為勾系一元二次方程

請(qǐng)解決下列問(wèn)題:

(1)寫(xiě)出一個(gè)勾系一元二次方程;

(2)求證:關(guān)于 x勾系一元二次方程,必有實(shí)數(shù)根;

(3)若 x 1勾系一元二次方程的一個(gè)根,且四邊形 ACDE 的周長(zhǎng)是6,求ABC 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰RtABC中,∠ABC90°,點(diǎn)A,B分別在坐標(biāo)軸上.

(1)如圖①,若點(diǎn)C的橫坐標(biāo)為5,求點(diǎn)B的坐標(biāo).

(2)如圖②,若BCx軸于M,過(guò)CCDBCy軸于D . 求證:BCCDMC.

(3)如圖③,若點(diǎn)A的坐標(biāo)為(40),點(diǎn)By軸正半軸上的一個(gè)動(dòng)點(diǎn),分別以OB,AB為直角邊在第一、第二象限作等腰RtOBF(OBF90°)、等腰RtABE(ABE90°),連接EFy軸于點(diǎn)P,當(dāng)點(diǎn)By軸上運(yùn)動(dòng)時(shí),PB的長(zhǎng)度是否發(fā)生改變?若不變,求出PB的值;若變化,求PB的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】紅紅和娜娜按如圖所示的規(guī)則玩一次錘子、剪刀、布游戲,下列命題中錯(cuò)誤的是(

A.紅紅不是勝就是輸,所以紅紅勝的概率為

B.紅紅勝或娜娜勝的概率相等

C.兩人出相同手勢(shì)的概率為

D.娜娜勝的概率和兩人出相同手勢(shì)的概率一樣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(8分)如圖,在平面直角坐標(biāo)系中,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(2,1)、B(1,-2).

(1)以原點(diǎn)O為位似中心,y軸的右側(cè)畫(huà)出OAB的一個(gè)位似△OA1B1 ,使它與△OAB的相似比為2:1,并分別寫(xiě)出點(diǎn)AB的對(duì)應(yīng)點(diǎn)A1、B1的坐標(biāo)

(2)畫(huà)出將OAB向左平移2個(gè)單位,再向上平移1個(gè)單位后的O2A2B2并寫(xiě)出點(diǎn)AB的對(duì)應(yīng)點(diǎn)A2、B2的坐標(biāo)

(3)判斷△OA1B1與△O2A2B2 ,能否是關(guān)于某一點(diǎn)M為位似中心的位似圖形,若是,請(qǐng)?jiān)趫D中標(biāo)出位似中心M,并寫(xiě)出點(diǎn)M的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊(cè)答案