【題目】為了增強學(xué)生體質(zhì),豐富學(xué)生的學(xué)習(xí)生活,某校設(shè)置室外活動課,并決定購買一些排球和跳繩.已知一個排球的費用比3根跳繩的費用少10元,2個排球與5根跳繩的總費用為200元.
(1)求每個排球和每根跳繩的價格分別為多少元;
(2)該校現(xiàn)計劃購買排球和跳繩110件,排球的數(shù)量不少于跳繩數(shù)量的,且用于購買排球和跳繩的總費用不超過3760元.請你通過計算求出該校有哪幾種購買方案.
【答案】(1)購買一根跳繩需要20元,購買一個排球需要50元;(2)方案1:購買跳繩58根,排球52個;方案2:購買跳繩59根,排球51個;方案3:購買跳繩60根,排球50個;方案4:購買跳繩61根,排球49個.
【解析】
(1)設(shè)購買一根跳繩需要x元,購買一個排球需要y元,根據(jù)題意可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;
(2)設(shè)班級購買m根跳繩,則購買個排球,依據(jù)題意得出關(guān)于m的一元一次不等式組,解之取整即可得出所有購買方案.
解:(1)設(shè)購買一根跳繩需要x元,購買一個排球需要y元,
依題意,得:,
解得:.
答:購買一根跳繩需要20元,購買一個排球需要50元;
(2)設(shè)班級購買m根跳繩,則購買個排球,
依題意,得:,
解得:,
為整數(shù),
=58、59、60、61,相應(yīng)的(110-m)=52、51、50、49.
答:方案1:購買跳繩58根,排球52個;方案2:購買跳繩59根,排球51個;方案3:購買跳繩60根,排球50個;方案4:購買跳繩61根,排球49個.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中的折線ABC表示某汽車的耗油量y(單位:L/km)與速度x(單位:km/h)之間的函數(shù)關(guān)系(30≤x≤120),已知線段BC表示的函數(shù)關(guān)系中,該汽車的速度每增加1km/h,耗油量增加0.002L/km.
(1)當(dāng)速度為50km/h、100km/h時,該汽車的耗油量分別為 L/km、 L/km.
(2)求線段AB所表示的y與x之間的函數(shù)表達(dá)式.
(3)速度是多少時,該汽車的耗油量最低.最低是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是以為直徑的上的一點,于點,過點作的切線,與的延長線相交于點,點是的中點,連結(jié)交于點
(1)求證:是的切線;
(2)求證:;
(3)若,且的半徑長為,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點O是等腰直角三角形ABC斜邊上的中點,AB=BC,E是AC上一點,連結(jié)EB.
(1) 如圖1,若點E在線段AC上,過點A作AM⊥BE,垂足為M,交BO于點F.求證:OE=OF;
(2)如圖2,若點E在AC的延長線上,AM⊥BE于點M,交OB的延長線于點F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用若干個小立方塊搭成一個幾何體,使它從正面看與從左面看都是如圖的同一個圖.通過實際操作,并與同學(xué)們討論,解決下列問題:
(1)所需要的小立方塊的個數(shù)是多少?你能找出幾種?
(2)畫出所需個數(shù)最少和所需個數(shù)最多的幾何體從上面看到的圖,并在小正方形里注明在該位置上小立方塊的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AC上,DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF、EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,△ABC三個頂點的坐標(biāo)分別為A(1,0),B(2,-3),C(4,-2).
(1)在圖中作出△ABC關(guān)于x軸對稱的圖形△A1B1C1.
(2)作出△A1B1C1向左平移4個單位長度后得到的△A2B2C2,并直接寫出點C2的坐標(biāo)_____.
(3)△A2B2C2的面積是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com