【題目】如圖1,在平面直角坐標(biāo)系中,Aab),Bc,0)是x軸正半軸上一點(diǎn),ABO30°,若|2a|互為相反數(shù).

1)求c的值;

2)如圖2,ACABx軸于C,以AC為邊的正方形ACDE的對(duì)角線ADx軸于F

求證:BE2OC

BF2OF2m,OC2n,求的值.

【答案】12+2;(2詳見解析;②3

【解析】

1)利用非負(fù)數(shù)的性質(zhì)求出a,b的值,可得點(diǎn)A的坐標(biāo),如圖1中,過點(diǎn)AAHOBH.解直角三角形求出OH,BH即可解決問題.

2如圖2中,延長(zhǎng)ACy軸于G,過點(diǎn)AATOAOBT.證AOG≌△ATBAAS),推出AGAB,AGOABT30°可得結(jié)論.

如圖2中,連接GF.證明GAF≌△BAFSAS),推出BFFG可得結(jié)論.

1)解:|2a|互為相反數(shù),

≥0,|2a|≥0,

ab2

A2,2),

如圖1中,過點(diǎn)AAHOBH

AHOH2,

Rt△AHB中,∵∠AHB90°,AH2,ABH30°,

∴tan∠ABH==tan30°

BHAH2,

OB2+2,

B2+2,0).

2證明:如圖2中,延長(zhǎng)ACy軸于G,過點(diǎn)AATOAOBT

由(1)可知AOB45°,

OAATACAB,

∴∠OATCAB90°,

∴∠OAGTAB,ATOAOT45°,

OAOT,

∵∠AOGATB135°,

∴△AOG≌△ATBAAS),

AGABAGOABT30°,

四邊形ACDE是正方形,

ACAE,

AGAB,

CGBE

∵∠COG90°∠CGO30°,

CG2OC,

BE2OC

解:如圖2中,連接GF

AGAB,GAFBAF45°,AFAF,

∴△GAF≌△BAFSAS),

BFFG,

mBF2OF2GF2OF2OG2,

OGOC,

=(23

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)準(zhǔn)備購買筆和本子送給農(nóng)村希望小學(xué)的同學(xué),在市場(chǎng)上了解到某種本子的單價(jià)比某種筆的單價(jià)少4元,且用30元買這種本子的數(shù)量與用50元買這種筆的數(shù)量相同.

(1)求這種筆和本子的單價(jià);

(2)該同學(xué)打算用自己的100元壓歲錢購買這種筆和本子,計(jì)劃100元?jiǎng)偤糜猛,并且筆和本子都買,請(qǐng)列出所有購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【背景知識(shí)】數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美地結(jié) 合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點(diǎn) A、點(diǎn) B 表示的數(shù)分別為 a、b,則AB 兩點(diǎn)之間的距離 AB= ,線段 AB 的中點(diǎn)表示的數(shù)為 .

【問題情境】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為-2,點(diǎn)B表示的數(shù)為8,點(diǎn)P從點(diǎn) A 出發(fā), 以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒 2個(gè)單 位長(zhǎng)度的速度向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0).

【綜合運(yùn)用】(1) 填空:

①A、B兩點(diǎn)之間的距離AB=__________,線段AB的中點(diǎn)表示的數(shù)為_______

②用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為_______;點(diǎn)Q表示的數(shù)為_____.

(2) 求當(dāng)t為何值時(shí),P、Q 兩點(diǎn)相遇,并寫出相遇點(diǎn)所表示的數(shù);

(3)求當(dāng)t為何值時(shí),PQ=AB;

(4)若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn) P在運(yùn)動(dòng)過程中,線段MN的長(zhǎng)度是否發(fā) 生變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出線段MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),試分別根據(jù)下列條件,求出點(diǎn)的坐標(biāo).

1)點(diǎn)軸上;

2)點(diǎn)的縱坐標(biāo)比橫坐標(biāo)大3;

3)點(diǎn)軸的距離為2,且在第四象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀第①小題的計(jì)算方法,再計(jì)算第②小題.

–5+–9+17+–3

解:原式=[–5+]+[–9+]+17++[–3+]

=[–5+–9+–3+17]+[+++]

=0+–1

=–1

上述這種方法叫做拆項(xiàng)法.靈活運(yùn)用加法的交換律、結(jié)合律可使運(yùn)算簡(jiǎn)便.

②仿照上面的方法計(jì)算:(﹣2000+(﹣1999+4000+(﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A.

(1)求點(diǎn)A的坐標(biāo);

(2)將線段沿軸向右平移2個(gè)單位得到線段

直接寫出點(diǎn)的坐標(biāo);

若拋物線與四邊形有且只有兩個(gè)公共點(diǎn),結(jié)合函數(shù)的圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了節(jié)約能源,某城市開展了節(jié)約水電活動(dòng),已知該城市共有10000戶家庭,活動(dòng)前,某調(diào)查小組隨機(jī)抽取了部分家庭每月的水電費(fèi)的開支(單位:元),結(jié)果如左圖所示頻數(shù)直方圖(每一組含前一個(gè)邊界值,不含后一個(gè)邊界值);活動(dòng)后,再次調(diào)查這些家庭每月的水電費(fèi)的開支,結(jié)果如表所示:

(1)求所抽取的樣本的容量;

(2)如以每月水電費(fèi)開支在225元以下(不含)為達(dá)到節(jié)約標(biāo)準(zhǔn),請(qǐng)問通過本次活動(dòng),該城市大約增加了多少戶家庭達(dá)到節(jié)約標(biāo)準(zhǔn)?

(3)活動(dòng)后,這些樣本家庭每月水電費(fèi)開支的總額能否低于6000?

(4)請(qǐng)選擇一個(gè)適當(dāng)?shù)慕y(tǒng)計(jì)量分析活動(dòng)前后的相關(guān)數(shù)據(jù),并評(píng)價(jià)節(jié)約水電活動(dòng)的效果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)EAH的中點(diǎn),點(diǎn)FGH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案