【題目】我市某儲運部緊急調撥一批物資,調進物資共用4小時,調進物資2小時后開始調出物資(調進物資與調出物資的速度均保持不變).儲運部庫存物資(噸)與時間(小時)之間的函數(shù)關系如圖所示,這批物資從開始調進到全部調出需要的時間是(

A. 4小時B. 4.3小時C. 4.4小時D. 5小時

【答案】C

【解析】

由圖中可以看出,2小時調進物資30噸,調進物資共用4小時,說明物資一共有60噸;2小時后,調進物資和調出物資同時進行,4小時時,物資調進完畢,倉庫還剩10噸,說明調出速度為:(60-10÷2噸,需要時間為:60÷25時,由此即可求出答案.

解:物資一共有60噸,調出速度為:(60-10÷2=25(噸/h),需要時間為:60÷25=2.4(時)
∴這批物資從開始調進到全部調出需要的時間是:2+2.4=4.4(小時).故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面內由極點、極軸和極徑組成的坐標系叫做極坐標系.如圖,在平面上取定一點O稱為極點;從點O出發(fā)引一條射線Ox稱為極軸;線段OP的長度稱為極徑.點P的極坐標就可以用線段OP的長度以及從Ox轉動到OP的角度(規(guī)定逆時針方向轉動角度為正)來確定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,則點P關于點O成中心對稱的點Q的極坐標表示不正確的是(

A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=﹣2x+1y軸交于點A,與反比例函數(shù)yk為常數(shù))的圖象有一個交點B的縱坐標是5

(Ⅰ)求反比例函數(shù)的解析式,并說明其圖象所在的象限;

(Ⅱ)當2x5時,求反比例函數(shù)的函數(shù)值y的取值范圍;

(Ⅲ)求△AOB的面積S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個題目:

按照給定的計算程序,確定使代數(shù)式nn+2)大于2000n的最小正整數(shù)值.想一想,怎樣迅速找到這個n值,請與同學們交流你的體會.

小亮嘗試計算了幾組nnn+2)的對應值如下表:

n

50

40

nn+2

2600

1680

1)請你繼續(xù)小亮的嘗試,再算幾組填在上表中(幾組隨意,自己畫格),并寫出滿足題目要求的n的值;

2)結合上述過程,對于“怎樣迅速找到n值”這個問題,說說你的想法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過正方形網(wǎng)格中的格點、、,請你僅用網(wǎng)格中的格點及無刻度的直尺分別在圖1、圖2、圖3中畫出一個滿足下列兩個條件的

1)頂點上且不與點、、、重合;

2在圖1、圖2、圖3中的正切值分別為1、2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知)的函數(shù),表1中給出了幾組的對應值:

1

1

2

3

6

3

2

1

1)以表中各對對應值為坐標,在圖1的直角坐標系中描出各點,用光滑曲線順次連接.由圖像知,它是我們已經(jīng)學過的哪類函數(shù)?求出函數(shù)解析式,并直接寫出的值;

2)如果一次函數(shù)圖像與(1)中圖像交于兩點,在第一、四象限內當在什么范圍時,一次函數(shù)的值小于(1)中函數(shù)的值?請直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級為了解學生課堂發(fā)言情況,隨機抽取該年級部分學生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為52,請結合圖中相關數(shù)據(jù)回答下列問題:

1)則樣本容量是   ,并補全直方圖;

2)該年級共有學生500人,請估計全年級在這天里發(fā)言次數(shù)不少于12的次數(shù);

3)已知A組發(fā)言的學生中恰有1位女生,E組發(fā)言的學生中有2位男生,現(xiàn)從A組與E組中分別抽一位學生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學生恰好是一男一女的概率.

發(fā)言次數(shù)n

A

0≤n3

B

3≤n6

C

6≤n9

D

9≤n12

E

12≤n15

F

15≤n18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知頂點為P的拋物線C1的解析式為y=a(x-3)2(a≠0),且經(jīng)過點(0,1).

(1)a的值及拋物線C1的解析式;

(2)如圖,將拋物線C1向下平移h(h>0)個單位得到拋物線C2,過點K(0,m2)(m>0)作直線l平行于x,與兩拋物線從左到右分別相交于A,B,C,D四點,A,C兩點關于y軸對稱.

①點G在拋物線C1,m為何值時,四邊形APCG為平行四邊形?

②若拋物線C1的對稱軸與直線l交于點E,與拋物線C2交于點F.試探究:K點運動過程中,的值是否改變?若會,請說明理由;若不會,請求出這個值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大熊山某農(nóng)家樂為了抓住五一小長假的商機,決定購進A、B兩種紀念品。若購進A種紀念品4件,B種紀念品3件,需要550元;若購進A種紀念品8件,B種紀念品5件,需要1050元。

1)求購進A、B兩種紀念品每件各需多少元。

2)若該農(nóng)家樂決定購進這兩種紀念品共100件,考慮市場需求和資金周轉,用于購買這100件紀念品的資金不少于7500元,但不超過7650元,那么該農(nóng)家樂共有幾種進貨方案。

3)若銷售每件A種紀念品可獲利潤30元,每件B種紀念品可獲利潤20元,在第(2)問的各種進貨方案中,哪一種方案獲利最大?最大利潤是多少元。

查看答案和解析>>

同步練習冊答案