【題目】選用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)x2 – 6x=7 (2)2x-6x -1=0 (3)3x(x+2)=5(x+2)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)如圖,四邊形ABCD、DEFG都是正方形,連接AE、CG、AE與CG相交于點(diǎn)M,CG與AD相交于點(diǎn)N.
求證:(1)AE=CG;
(2)ANDN=CNMN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O、A2B2C2C1、A3B3C3C2、……按如圖所示的方式放置.點(diǎn)A1、A2、A3、…和點(diǎn)C1、C2、C3、…分別在直線y=x+1和x軸上,則點(diǎn)B7的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△CDE為等腰直角三角形,∠BAC=∠DEC=90°,連接AD,取AD中點(diǎn)P,連接BP,并延長到點(diǎn)M,使BP=PM,連接AM、EM、AE,將△CDE繞點(diǎn)C順時針旋轉(zhuǎn).
(1)如圖①,當(dāng)點(diǎn)D在BC上,E在AC上時,AE與AM的數(shù)量關(guān)系是______,∠MAE=______;
(2)將△CDE繞點(diǎn)C順時針旋轉(zhuǎn)到如圖②所示的位置,(1)中的結(jié)論是否仍然成立,若成立,請給出證明,若不成立,請說明理由;
(3)若CD=BC,將△CDE由圖①位置繞點(diǎn)C順時針旋轉(zhuǎn)α(0°<α<360°),當(dāng)ME=CD時,請直接寫出α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列方程中,一元二次方程的個數(shù)是( 。
①3x2+7=0;②ax2+bx+c=0;③(x﹣2)(x+5)=x2﹣1;④3x2﹣=0.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸l為x=﹣1.
(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);
(2)若動點(diǎn)P在第二象限內(nèi)的拋物線上,動點(diǎn)N在對稱軸l上.
①當(dāng)PA⊥NA,且PA=NA時,求此時點(diǎn)P的坐標(biāo);
②當(dāng)四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動課上,數(shù)學(xué)興趣小組的同學(xué)們測量校園內(nèi)一棵大樹的高度,設(shè)計(jì)的方案及測量數(shù)據(jù)如下:
(1)在大樹前的平地上選擇一點(diǎn)A,測得由點(diǎn)A看大樹頂端C的仰角為35°;
(2)在點(diǎn)A和大樹之間選擇一點(diǎn)B(A、B、D在同一直線上),測得由點(diǎn)B看大樹頂端C的仰角恰好為45°;
(3)量出A、B兩點(diǎn)間的距離為4.5米.請你根據(jù)以上數(shù)據(jù)求出大樹CD的高度.(可能用到的參考數(shù)據(jù):sin350.57;cos350.82;tan350.70)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點(diǎn)為P,若點(diǎn)P的縱坐標(biāo)是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點(diǎn)A(x1,y1)、B(x2,y2),當(dāng)y1>y2時,試比較x1與x2的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com