【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b24ac0;②a+b+c0;③ca=2;④方程ax2+bx+c2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論的個(gè)數(shù)為( 。

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】C

【解析】

由拋物線與x軸有兩個(gè)交點(diǎn)得到b2-4ac>0;有拋物線頂點(diǎn)坐標(biāo)得到拋物線的對稱軸為直線x=-1,則根據(jù)拋物線的對稱性得拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(0,0)和(10)之間,所以當(dāng)x=1時(shí),y<0,則a+b+c<0;由拋物線的頂點(diǎn)為D-1,2)得a-b+c=2,由拋物線的對稱軸為直線x=-=-1b=2a,所以c-a=2;根據(jù)二次函數(shù)的最大值問題,當(dāng)x=-1時(shí),二次函數(shù)有最大值為2,即只有x=-1時(shí),ax2+bx+c=2,所以說方程ax2+bx+c-2=0有兩個(gè)相等的實(shí)數(shù)根.

∵拋物線與x軸有兩個(gè)交點(diǎn),

b24ac>0,所以①錯誤;

∵頂點(diǎn)為D(1,2)

∴拋物線的對稱軸為直線x=1,

∵拋物線與x軸的一個(gè)交點(diǎn)A在點(diǎn)(3,0)(2,0)之間,

∴拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(0,0)(1,0)之間,

∴當(dāng)x=1時(shí),y<0,

a+b+c<0,所以②正確;

∵拋物線的頂點(diǎn)為D(1,2)

ab+c=2,

∵拋物線的對稱軸為直線x==1,

b=2a,

a2a+c=2,即ca=2,所以③正確;

∵當(dāng)x=1時(shí),二次函數(shù)有最大值為2

即只有x=1時(shí),ax2+bx+c=2,

∴方程ax2+bx+c2=0有兩個(gè)相等的實(shí)數(shù)根,所以④正確.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A20),點(diǎn)B0,),點(diǎn)O00).△AOB繞著O順時(shí)針旋轉(zhuǎn),得△A'OB',點(diǎn)A、B旋轉(zhuǎn)后的對應(yīng)點(diǎn)為A',B',記旋轉(zhuǎn)角為α

(Ⅰ)如圖1A'B'恰好經(jīng)過點(diǎn)A時(shí),求此時(shí)旋轉(zhuǎn)角α的度數(shù),并求出點(diǎn)B'的坐標(biāo);

(Ⅱ)如圖2,若0°<α90°,設(shè)直線AA'和直線BB'交于點(diǎn)P,求證:AA'⊥BB';

(Ⅲ)若0°<α360°,求(Ⅱ)中的點(diǎn)P縱坐標(biāo)的最小值(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在半徑為1上,直線相切,,連接于點(diǎn).

(Ⅰ)如圖①,若,求的長;

(Ⅱ)如圖②,交于點(diǎn),若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),拋物線與y軸交于點(diǎn)A,E(0,b)為y軸上一動點(diǎn),過點(diǎn)E的直線與拋物線交于點(diǎn)B、C .

(1)則點(diǎn)A的坐標(biāo)是 ______ ;

(2)當(dāng)b = 0時(shí)(如圖(2)),△ABE與△ACE的面積大小關(guān)系如何?當(dāng)時(shí),上述關(guān)系還成立嗎,為什么?

(3)是否存在這樣的b,使得△BOC是以BC 為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB⊙O的直徑,D⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.

(1)求證:BD平分∠ABC;

(2) 當(dāng)∠ODB=30°時(shí),求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,OD⊥AB,垂足為點(diǎn)C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.

(1)若∠AOD=52°,求∠DEB的度數(shù);

(2)若OC=3,OA=6,求tan∠DEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的BC邊上一點(diǎn)O為圓心,經(jīng)過A,C兩點(diǎn)且與BC邊交于點(diǎn)E,點(diǎn)D為CE的下半圓弧的中點(diǎn),連接AD交線段EO于點(diǎn)F,若AB=BF.

(1)求證:AB是O的切線;

(2)若CF=4,DF=,求⊙O的半徑r及sinB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,, ,,點(diǎn)上,于點(diǎn),于點(diǎn),當(dāng)時(shí),________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O和⊙O上的一點(diǎn)A(如圖).

(1)作⊙O的內(nèi)接正方形ABCD和內(nèi)接正六邊形AEFCGH;

(2)在(1)題的作圖中,如果點(diǎn)E在上,求證:DE是⊙O內(nèi)接正十二邊形的邊.

查看答案和解析>>

同步練習(xí)冊答案