【題目】如圖,以△ABC的BC邊上一點O為圓心,經(jīng)過A,C兩點且與BC邊交于點E,點D為CE的下半圓弧的中點,連接AD交線段EO于點F,若AB=BF.
(1)求證:AB是⊙O的切線;
(2)若CF=4,DF=,求⊙O的半徑r及sinB.
【答案】(1)證明見解析;(2)r=3,sinB=.
【解析】試題分析:(1)連接OA、OD,如圖,根據(jù)垂徑定理得OD⊥BC,則∠D+∠OFD=90°,再由AB=BF,OA=OD得到∠BAF=∠BFA,∠OAD=∠D,加上∠BFA=∠OFD,所以∠OAD+∠BAF=90°,則OA⊥AB,然后根據(jù)切線的判定定理即可得到AB是⊙O切線;
(2)先表示出OF=4﹣r,OD=r,在Rt△DOF中利用勾股定理建立方程,解方程得到r的值,那么OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.
然后在Rt△AOB中利用勾股定理,得到AB的值,再根據(jù)三角函數(shù)定義求出sinB.
試題解析:(1)證明:連接OA、OD,如圖,∵點D為CE的下半圓弧的中點,∴OD⊥BC,∴∠EOD=90°,∵AB=BF,OA=OD,∴∠BAF=∠BFA,∠OAD=∠D,而∠BFA=∠OFD,∴∠OAD+∠BAF=∠D+∠BFA=90°,即∠OAB=90°,∴OA⊥AB,∴AB是⊙O切線;
(2)解:OF=CF﹣OC=4﹣r,OD=r,DF=,在Rt△DOF中, ,即,解得:r=3或r=1(舍去);∴半徑r=3,∴OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.在Rt△AOB中, ,∴,∴AB=4,OB=5,∴sinB==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元
(1) 求甲、乙兩種商品每件的進價分別是多少元?
(2) 商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為6,AD是BC邊上的中線,M是AD上的動點,E是AC邊上一點,若AE=2,EM+CM的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,CD⊥AB于點D,CD=BD,BE平分∠ABC,點H是BC邊的中點,連接DH,交BE于點G,連接CG.
(1)求證:△ADC≌△FDB;
(2)求證:CE= BF;
(3)判斷△ECG的形狀,并證明你的結(jié)論;
(4)猜想BG與CE的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是 .
(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC,BD相交于O點,E,F(xiàn)分別是AB,BC邊上的中點,連結(jié)EF.若EF=2 ,BD=8,則菱形ABCD的周長為( )
A.8
B.8
C.16
D.8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com