(2006•湛江)如圖,點(diǎn)E,F(xiàn),G,H分別為四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn),試判斷四邊形EFGH的形狀,并證明你的結(jié)論.

【答案】分析:四邊形EFGH是平行四邊形,連接AC,根據(jù)中位線定理,可證得EF∥AC,且EF=AC.GH∥AC,且GH=AC,∴EFGH.∴四邊形EFGH是平行四邊形.
解答:解:四邊形EFGH是平行四邊形
證明:連接AC,如圖.
∵E,F(xiàn)分別是AB,BC的中點(diǎn),
∴EF是△ABC的中位線,
∴EF∥AC,且EF=AC.
同理:GH∥AC,且GH=AC,
∴EFGH.
∴四邊形EFGH是平行四邊形.
點(diǎn)評(píng):此題主要考查平行四邊形的判定,綜合運(yùn)用了中位線定理,作輔助線是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《相交線與平行線》(03)(解析版) 題型:填空題

(2006•湛江)如圖,已知直線AB∥CD,∠ABE=60°,∠CDE=20°,則∠BED=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年陜西省寶雞市金臺(tái)區(qū)中考數(shù)學(xué)命題比賽模擬題(解析版) 題型:解答題

(2006•湛江)如圖,AB是⊙O的直徑,AE平分∠BAF,交⊙O于點(diǎn)E,過(guò)點(diǎn)E作直線ED⊥AF,交AF的延長(zhǎng)線于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)C.
(1)求證:CD是⊙O的切線;
(2)若CB=2,CE=4,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣東省湛江市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•湛江)如圖,在Rt△ABC中,∠C=90°,BC=1,AC=2,把邊長(zhǎng)分別為x1,x2,x3,…,xn的n個(gè)正方形依次放入△ABC中,請(qǐng)回答下列問(wèn)題:
(1)按要求填表:
n123
xn
(2)第n個(gè)正方形的邊長(zhǎng)xn=______;
(3)若m,n,p,q是正整數(shù),且xm•xn=xp•xq,試判斷m,n,p,q的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣東省湛江市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•湛江)如圖,MN表示海岸線,A,B分別表示甲、乙兩間工廠,現(xiàn)要在海岸MN上修建一個(gè)碼頭,要求修建的碼頭到甲、乙兩間工廠的距離相等,求作碼頭的位置P.(用尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)出作法、證明和討論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年廣東省湛江市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•湛江)如圖,⊙O的半徑為5,弦AB的長(zhǎng)為8,點(diǎn)M在線段AB(包括端點(diǎn)A,B)上移動(dòng),則OM的取值范圍是( )

A.3≤OM≤5
B.3≤OM<5
C.4≤OM≤5
D.4≤OM<5

查看答案和解析>>

同步練習(xí)冊(cè)答案