【題目】如圖,夜晚,小亮從點(diǎn)A經(jīng)過路燈C的正下方沿直線走到點(diǎn)B,他的影長y隨他與點(diǎn)A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為( )
A.
B.
C.
D.
【答案】A
【解析】解:設(shè)身高GE=h,CF=l,AF=a,
當(dāng)x≤a時(shí),
在△OEG和△OFC中,
∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,
∴△OEG∽△OFC,
∴ = ,
∴ = ,
∴y=﹣ x+ ,
∵a、h、l都是固定的常數(shù),
∴自變量x的系數(shù)是固定值,
∴這個(gè)函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;
∵影長將隨著離燈光越來越近而越來越短,到燈下的時(shí)候,將是一個(gè)點(diǎn),進(jìn)而隨著離燈光的越來越遠(yuǎn)而影長將變大.
故A符合題意.
所以答案是:A.
【考點(diǎn)精析】利用函數(shù)的圖象和中心投影對(duì)題目進(jìn)行判斷即可得到答案,需要熟知函數(shù)的圖像是由直角坐標(biāo)系中的一系列點(diǎn)組成;圖像上每一點(diǎn)坐標(biāo)(x,y)代表了函數(shù)的一對(duì)對(duì)應(yīng)值,他的橫坐標(biāo)x表示自變量的某個(gè)值,縱坐標(biāo)y表示與它對(duì)應(yīng)的函數(shù)值;手電筒、路燈和臺(tái)燈的光線可以看成是從一個(gè)點(diǎn)發(fā)出的,這樣的光線所形成的投影稱為中心投影;作一物體中心投影的方法:過投影中心與物體頂端作直線,直線與投影面的交點(diǎn)與物體的底端之間的線段即為物體的影子.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】爸爸想送小明一個(gè)書包和一輛自行車作為新年禮物,在甲、乙兩商場都發(fā)現(xiàn)同款的自行車單價(jià)相同,書包單價(jià)也相同,自行車和書包單價(jià)之和為452元,且自行車的單價(jià)比書包的單價(jià)4倍少8元.
(1)求自行車和書包單價(jià)各為多少元;
(2)新年來臨趕上商家促銷,乙商場所有商品打八五折(即8.5折)銷售,甲全場購物毎滿100元返購物券30元(即不足100元不返券,滿100元送30元購物券,滿200元送60元購物券),并可當(dāng)場用于購物,購物券全場通用.但爸爸只帶了400元錢,如果他只在同一家商場購買看中的兩樣物品,在哪一家買更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=3,點(diǎn)O在AB上,OB=2,以O(shè)B為半徑的⊙O與AC相切于點(diǎn)D,交BC于點(diǎn)E,求弦BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次函數(shù)y=﹣ (x﹣2)2﹣3,下列說法錯(cuò)誤的是( )
A.圖象的開口向下
B.當(dāng)x=2時(shí),y有最大值﹣3
C.圖象的頂點(diǎn)坐標(biāo)為(2,﹣3)
D.圖象與y軸的交點(diǎn)坐標(biāo)為(0,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列關(guān)系錯(cuò)誤的是( )
A. ∠AOC=∠AOB+∠BOC
B. ∠AOC=∠AOD-∠COD
C. ∠AOC=∠AOB+∠BOD-∠BOC
D. ∠AOC=∠AOD-∠BOD+∠BOC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在桌面上,有若干個(gè)完全相同的小正方體堆成的一個(gè)幾何體,如圖所示.
(1)請(qǐng)畫出這個(gè)幾何體的三視圖.
(2)若將此幾何體的表面噴上紅漆(放在桌面上的一面不噴),則三個(gè)面上是紅色的小正方體有_______個(gè).
(3)若現(xiàn)在你的手頭還有一些相同的小正方體可添放在幾何體上,要保持主視圖和左視圖不變,則最多可以添加________個(gè)小正方體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,F(xiàn)是DC上一點(diǎn),AE平分∠BAF交BC于點(diǎn)E,且DE⊥AF,垂足為點(diǎn)M,BE=3,AE=2 ,則MF的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的等邊△ABO在平面直角坐標(biāo)系的位置如圖所示,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸上,以點(diǎn)O為旋轉(zhuǎn)中心,將△ABO按逆時(shí)針方向旋轉(zhuǎn)60°,得到△OA′B′,則點(diǎn)A′的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC。其中一定能判斷這個(gè)四邊形是平行四邊形的條件共有
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com