【題目】如圖,Rt△ABC中,∠C=90°,BC=3,點O在AB上,OB=2,以OB為半徑的⊙O與AC相切于點D,交BC于點E,求弦BE的長.
【答案】解:連接OD,作OF⊥BE于點F.
∴BF= BE,
∵AC是圓的切線,
∴OD⊥AC,
∴∠ODC=∠C=∠OFC=90°,
∴四邊形ODCF是矩形,
∵OD=OB=FC=2,BC=3,
∴BF=BC﹣FC=BC﹣OD=3﹣2=1,
∴BE=2BF=2.
【解析】本題考查了切線的性質、勾股定理及垂徑定理的知識,通過輔助線證明四邊形OFCD是矩形,得到BF的值,然后利用垂徑定理即可求出BE的長.
【考點精析】根據(jù)題目的已知條件,利用勾股定理的概念和切線的性質定理的相關知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD的面積為300cm2,長和寬的比為3:2.在此長方形內沿著邊的方向能否并排裁出兩個面積均為147cm2的圓(π取3),請通過計算說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB,作圖.
步驟1:在OB上任取一點M,以點M為圓心,MO長為半徑畫半圓,分別交OA、OB于點P、Q;
步驟2:過點M作PQ的垂線交 于點C;
步驟3:畫射線OC.
則下列判斷:① = ;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】歐城物業(yè)為美化小區(qū),要對面積為9600平方米的區(qū)域進行綠化,計劃安排甲、乙兩個園林隊完成,已知甲園林隊每天綠化面積是乙園林隊每天綠化面積的2倍,并且甲、乙兩園林隊獨立完成面積為800平方米區(qū)域的綠化時,甲園林隊比乙園林隊少用2天.
(1)求甲、乙兩園林隊每天能完成綠化的面積分別是多少平方米.
(2)物業(yè)每天需付給甲園林隊的綠化費用為0.4萬元,乙園林隊的綠化費用為0.25萬元,如果這次綠化總費用不超過10萬元,那么歐城物業(yè)至少應安排甲園林隊工作多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解學生的課外閱讀情況,隨機抽取了50名學生,并統(tǒng)計他們平均每天的課外閱讀時間t(單位:min),然后利用所得數(shù)據(jù)繪制成如圖不完整的統(tǒng)計圖表.
課外閱讀時間頻數(shù)分布表
課外閱讀時間t | 頻數(shù) | 百分比 |
10≤t<30 | 4 | 8% |
30≤t<50 | 8 | 16% |
50≤t<70 | a | 40% |
70≤t<90 | 16 | b |
90≤t<110 | 2 | 4% |
合計 | 50 | 100% |
請根據(jù)圖表中提供的信息回答下列問題:
(1)a= , b=;
(2)將頻數(shù)分布直方圖補充完整;
(3)若全校有900名學生,估計該校有多少學生平均每天的課外閱讀時間不少于50min?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】長江汛期即將來臨,防汛指揮部在一危險地帶兩岸各安置了一探照燈,便于夜間查看江水及兩岸河堤的情況.如圖,燈A射線自AM順時針旋轉至AN便立即回轉,燈B射線自BP順時針旋轉至BQ便立即回轉,兩燈不停交叉照射巡視.若燈A轉動的速度是a°/秒,燈B轉動的速度是b°/秒,且a、b滿足|a﹣3b|+(a+b﹣4)2=0.假定這一帶長江兩岸河堤是平行的,即PQ∥MN,且∠BAN=45°
(1)求a、b的值;
(2)若燈B射線先轉動20秒,燈A射線才開始轉動,在燈B射線到達BQ之前,A燈轉動幾秒,兩燈的光束互相平行?
(3)如圖,兩燈同時轉動,在燈A射線到達AN之前.若射出的光束交于點C,過C作CD⊥AC交PQ于點D,則在轉動過程中,= 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,西安路與南京路平行,并且與八一街垂直,曙光路與環(huán)城路垂直.如果小明站在南京路與八一街的交叉口,準備去書店,按圖中的街道行走,最近的路程約為( 。
A、600mB、500m
C、400mD、300m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,夜晚,小亮從點A經過路燈C的正下方沿直線走到點B,他的影長y隨他與點A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關系的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABO的三個頂點坐標分別為A(1,3),B(4,0),O(0,0).
(1)畫出將△ABO向左平移4個單位長度,再向上平移2個單位長度后得到的△A1B1O1;
(2)在(1)中,若△ABC上有一點M(3,1),則其在△A1B1O1中的對應點M1的坐標為 ;
(3)若將(1)中△A1B1O1看成是△ABO經過一次平移得到的,則這一平移的距離是 ;
(4)畫出△ABO關于點O成中心對稱的圖形△A2B2O.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com