【題目】如圖,已知正方形的邊長(zhǎng)為,點(diǎn),,,分別在正方形的四條邊上,且,則四邊形的形狀為________,它的面積的最小值為________.
【答案】正方形
【解析】
先證明△AEH≌△DFE≌△CGF≌△BHG,從而得到HE=EF=FG=HG,然后證明EFGH四邊形有一個(gè)角是直角,從而可判斷出四邊形EFGH的形狀,設(shè)AE=x,則AH=(-x),依據(jù)正方形的面積公式以及勾股定理可得到四邊形EFGH的面積與x的函數(shù)關(guān)系式,依據(jù)二次函數(shù)的性質(zhì)求得二次函數(shù)的最小值即可.
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD, ∠A=∠B=∠C=∠D.
∵AE=DF=CG=BH,
∴AH=ED=FG=BG.
在△AEH、△DFE、△CGF、△BHG中, ,
∴△AEH≌△DFE≌CGF≌△BHG.
∴HE=EF=FG=HG.
∴四邊形EFGH是菱形.
∵△AEH≌△DFE,
∴∠AEH=∠DFE.
∵∠AHE+∠AEH=90°,
∴∠DEF+∠AEH=90°.
∴∠HEF=90°.
∴EHGF為正方形.
設(shè)AE=x,則AH=(-x).
∵正方形EFHG的面積=HE=AE+AH=x+( -x) =2x-2 x+5,
∴當(dāng)x=時(shí),正方形的面積有最小值.
∴正方形EFHG的面積的最小值=.
故答案為:正方形;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,兩點(diǎn)關(guān)于軸對(duì)稱(chēng),且點(diǎn)在反比例函數(shù)的圖象上,點(diǎn)在直線上,設(shè)點(diǎn)坐標(biāo)為,則的頂點(diǎn)坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中, ∠ACB=90°,點(diǎn)D在直線BC上,BD=6,AD=BC,AC:CD=5:12,則S△ADB =_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為4的正方形OABC的頂點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上.動(dòng)點(diǎn)D在線段BC上移動(dòng)(不與B,C重合),連接OD,過(guò)點(diǎn)D作DE⊥OD,交邊AB于點(diǎn)E,連接OE.
(1)當(dāng)CD=1時(shí),求點(diǎn)E的坐標(biāo);
(2)如果設(shè)CD=t,梯形COEB的面積為S,那么是否存在S的最大值?若存在,請(qǐng)求出這個(gè)最大值及此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D,E分別在AC,AB上,BD與CE相交于點(diǎn)O,已知∠B=∠C,現(xiàn)添加下面的哪一個(gè)條件后,仍不能判定△ABD≌△ACE的是( )
A.AD=AEB.AB=ACC.BD=CED.∠ADB=∠AEC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD=BE,∠D=∠E,∠ABC=∠DBE=90°,BF⊥AE,且點(diǎn)A,C,E在同一條直線上.
(1)求證:△DAB≌△ECB;
(2)若AD=3,AF=1,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,邊長(zhǎng)為的正方形的一個(gè)頂點(diǎn)在邊上,與另兩邊分
別交于點(diǎn)、,,將正方形平移,使點(diǎn)保持在上(不與重合),設(shè),正方形與重疊部分的面積為.
求與的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍;
為何值時(shí)的值最大?
在哪個(gè)范圍取值時(shí)的值隨的增大而減?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知線段、相交于點(diǎn)O,連接、.
(1)求證:;
(2)如圖2,與的平分線、相交于點(diǎn)P,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF,
(1)證明:CF=EB.
(2)證明:AB=AF+2EB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com