【題目】如圖,在ABC中,∠C=90°,∠A=30°,以點(diǎn)B為圓心,適當(dāng)長(zhǎng)為半徑的畫弧,分別交BA,BC于點(diǎn)M、N;再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P,作射線BPAC于點(diǎn)D,則下列說法中不正確的是()

A. BP是∠ABC的平分線B. AD=BDC. D. CD=BD

【答案】C

【解析】

A、由作法得BD是∠ABC的平分線,即可判定;

B、先根據(jù)三角形內(nèi)角和定理求出∠ABC的度數(shù),再由BP是∠ABC的平分線得出∠ABD30°=∠A,即可判定;

C,D、根據(jù)含30°的直角三角形,30°所對(duì)直角邊等于斜邊的一半,即可判定.

解:由作法得BD平分∠ABC,所以A選項(xiàng)的結(jié)論正確;

∵∠C90°,∠A30°,

∴∠ABC60°,

∴∠ABD30°=∠A,

ADBD,所以B選項(xiàng)的結(jié)論正確;

∵∠CBDABC30°

BD2CD,所以D選項(xiàng)的結(jié)論正確;

AD2CD,

SABD2SCBD,所以C選項(xiàng)的結(jié)論錯(cuò)誤.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中∠BAC=120°,AB=AC,點(diǎn)M、N在邊BC上,且∠MAN=60°BM=2,CN=3,則MN的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P是第一象限角平分線上的一點(diǎn),OP=,直角三角板的直角頂點(diǎn)與點(diǎn)P重合,把直角三角板繞點(diǎn)P轉(zhuǎn)動(dòng),另兩條直角邊所在直線與x軸正半軸、y軸正半軸分別交于A、B兩點(diǎn)

(1)求點(diǎn)P的坐標(biāo)

(2)若點(diǎn)A的坐標(biāo)為(0,m),點(diǎn)B的坐標(biāo)為(n,0),試判斷m、n有什么數(shù)量關(guān)系,并說明理由

(3)連接AB,ABO的面積是否存在最大值,若存在,求出最大值,若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題探究

①如圖1,在直角,,點(diǎn)邊上一點(diǎn),連接,的最小值為_________.

②如圖2,在等腰直角, ,,求邊的長(zhǎng)度(用含的代數(shù)式表示);

2)問題解決

③如圖3,在等腰直角,,點(diǎn)是邊的中點(diǎn),若點(diǎn)邊上一點(diǎn),試求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

如圖在等邊三角形ABC中,線段AMBC邊上的中線,動(dòng)點(diǎn)D在直線AM上時(shí),以CD為一邊在CD的下方作等邊三角形CDE,連接BE

1)填空:∠CAM   ;

2)若點(diǎn)D在線段AM上時(shí),求證:△ADC≌△BEC

3)當(dāng)動(dòng)點(diǎn)D在直線AM上時(shí),設(shè)直線BE與直線AM的交點(diǎn)為O,

當(dāng)點(diǎn)D在線段AM上時(shí),求∠AOB的度數(shù);

當(dāng)動(dòng)點(diǎn)D在直線AM上時(shí),試判斷∠AOB是否為定值?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線上,且∠CDA=∠CBD.

(1)判斷CD與圓O的位置關(guān)系,并說明理由;

(2)若O的半徑為2,CBD=30°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1個(gè)A1BC中,∠B20°,A1BCB;在邊A1B上任取一點(diǎn)D,延長(zhǎng)CA1A2,使A1A2A1D,得到第2個(gè)A1A2D;在邊A2D上任取一點(diǎn)E,延長(zhǎng)A1A2A3,使A2A3A2E,得到第3個(gè)A2A3E,按此做法繼續(xù)下去,第2019個(gè)等腰三角形的底角度數(shù)是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長(zhǎng)為4,面積為12,腰AB的垂直平分線EFAB于點(diǎn)E,交AC于點(diǎn)F.DBC邊的中點(diǎn),M為線段EF上一個(gè)動(dòng)點(diǎn),則BDM的周長(zhǎng)的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:大家知道是無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分。又例如:因?yàn)?/span>,,所以的整數(shù)部分為2,小數(shù)部分為,請(qǐng)解答下列問題:

(1) 如果的小數(shù)部分為a,的整數(shù)部分為b,求的值;

(2)已知,其中x是整數(shù),且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案