【題目】如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F(xiàn)是BC的中點(diǎn),過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于( )

A.3:4
B. :2
C. :2
D.2

【答案】D
【解析】解:連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M,

∵根據(jù)三角形的面積和平行四邊形的面積得:SDEC=SDFA= S平行四邊形ABCD,

AF×DP= CE×DQ,

∴AF×DP=CE×DQ,

∵四邊形ABCD是平行四邊形,

∴AD∥BC,

∵∠DAB=60°,

∴∠CBN=∠DAB=60°,

∴∠BFN=∠MCB=30°,

∵AB:BC=3:2,

∴設(shè)AB=3a,BC=2a,

∵AE:EB=1:2,F(xiàn)是BC的中點(diǎn),

∴BF=a,BE=2a,

BN= a,BM=a,

由勾股定理得:FN= a,CM= a,

AF= = a,

CE= =2 a,

aDP=2 aDQ

∴DP:DQ=2

故答案為:D.

連接DE、DF,過F作FN⊥AB于N,過C作CM⊥AB于M,得出根據(jù)三角形的面積和平行四邊形的面積得:SDEC=SDFA= S平行四邊形ABCD,證得AF×DP=CE×DQ,由AB:BC=3:2,AE:EB=1:2,F(xiàn)是BC的中點(diǎn),設(shè)AB=3a,用含a的代數(shù)式分別表示出BC、BF、BE、BN、BM的長,利用勾股定理求出AF、CE的長,代入AF×DP=CE×DQ,即可求出DP:DQ的值。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形ABCD中,AC為對角線,延長CD至點(diǎn)E使CE=CA,連接AE。F為AB上一點(diǎn),且BF=DE,連接FC.

(1)若DE=1,CF=2,求CD的長。

(2)如圖2,點(diǎn)G為線段AE的中點(diǎn),連接BG交AC于H,若∠BHC+∠ABG=600,求證:AF+CE=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一塊直角三角形的綠地,量得直角邊BC6cm,AC8cm,現(xiàn)在要將原綠地擴(kuò)充后成等腰三角形,且擴(kuò)充的部分是以AC為直角邊的直角三角形,求擴(kuò)充后的等腰三角形綠地的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形延長AD到E,使DE=AD連接EB,EC,DB添加一個條件,不能使四邊形DBCE成為矩形的是( )

A)AB=BE BBEDC CADB=90° DCEDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為5,弦AB長為8,過AB的中點(diǎn)E有一動弦CD(點(diǎn)C只在弦AB所對的劣弧上運(yùn)動,且不與A、B重合),設(shè)CE=x,ED=y,下列圖象中能夠表示y與x之間函數(shù)關(guān)系的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l:y= x,過點(diǎn)M(2,0)作x軸的垂線交直線l于點(diǎn)N,過點(diǎn)N作直線l的垂線交x軸于點(diǎn)M1;過點(diǎn)M1作x軸的垂線交直線l于N1 , 過點(diǎn)N1作直線l的垂線交x軸于點(diǎn)M2 , …;按此作法繼續(xù)下去,則點(diǎn)M8坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)先化簡,再求值:( ,其中x= ﹣2.
(2)計算:|﹣4|+( 2﹣( ﹣1)0 cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.

(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料: 小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進(jìn)行了以下探索:

設(shè)(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

當(dāng)均為正整數(shù)時,若,用含mn的式子分別表示,得   ,   

2)利用所探索的結(jié)論,找一組正整數(shù),填空:    (      )2;

3)若,且均為正整數(shù),求的值.

查看答案和解析>>

同步練習(xí)冊答案