【題目】如圖,在平面直角坐標系xOy中,已知P12).

1)在平面直角坐標系中描出點P(保留畫圖痕跡);

2)如果將點P向左平移3個單位長度,再向上平移1個單位長度得到點P',則點P'的坐標為 

3)點A在坐標軸上,若SOAP2,直接寫出滿足條件的點A的坐標.

【答案】1)點P的位置如圖所示,見解析;(2)點P'的坐標為(﹣2,3);(3)點A的坐標為(04)或(0,﹣4)或(2,0)或(﹣20).

【解析】

1)根據(jù)題意畫出點P即可;

2)根據(jù)平移的性質(zhì)得出坐標即可;

3)根據(jù)三角形的面積公式解答即可.

1)點P的位置如圖所示,

2)將點P向左平移3個單位長度,再向上平移1個單位長度得到點P',則點P'的坐標為(﹣2,3),

故填:(﹣2,3);

3)∵點A在坐標軸上,SOAP2,

當點Ax軸上時,△OAP的高為2,故OA的長為2,2,0)或(﹣2,0).

當點Ay軸上時,△OAP的高為1,故OA的長為4,0,4)或(0,﹣4).

A的坐標為(0,4)或(0,﹣4)或(2,0)或(﹣20).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以點A為頂點作兩個等腰直角三角形(ABC,△ADE),如圖所示放置,使得一直角邊重合,連接BD,CE

1)求證:BD=CE;(2)延長BD,交CE于點F,求∠BFC的度數(shù);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景點試開放期間,團隊收費方案如下:不超過30人時,人均收費120元;超過30人且不超過m30m≤100)人時,每增加1人,人均收費降低1元;超過m人時,人均收費都按照m人時的標準.設(shè)景點接待有x名游客的某團隊,收取總費用為y元.

1)求y關(guān)于x的函數(shù)表達式;

2)景點工作人員發(fā)現(xiàn):當接待某團隊人數(shù)超過一定數(shù)量時,會出現(xiàn)隨著人數(shù)的增加收取的總費用反而減少這一現(xiàn)象.為了讓收取的總費用隨著團隊中人數(shù)的增加而增加,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天,小明和小玲玩紙片拼圖游戲,發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些長方形來解釋某些等式,比如圖②可以解釋為:

1)圖③可以解釋為等式:        

2)要拼出一個長為a+3b,寬為2a+b的長方形,需要如圖所示    塊,    塊,    塊.

3)如圖④,大正方形的邊長為m,小正方形的邊長為n,若用x、y表示四個小長方形的兩邊長(xy),觀察圖案,以下關(guān)系式正確的是    (填序號)

,②,③,④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AECF,∠ACF的平分線交AE于點B,GCF上的一點,∠GBE的平分線交CF于點D,且BDBC,下列結(jié)論:BC平分∠ABG;ACBG與∠DBE互余的角有2個;若∠Aα,則∠BDF.其中正確的有_____.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形ABCD中,∠A=D=B=C=90,EAD上的一點,FAB上的一點,EFEC,且EFECDE=4cm.

(1)求證:AF=DE.

(2)AD+DC=18,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,用字母表示的代數(shù)式是具有一般意義的.下列賦予3a實際意義的例子中不正確的是(

A.a表示一個等邊三角形的邊長,則3a表示這個等邊三角形的周長

B.若蘋果的價格是3/千克,則3a表示買a千克蘋果的金額

C.若一個兩位數(shù)的十位數(shù)字是3和個位數(shù)字是a,則3a表示這個兩位數(shù)

D.若一個圓柱體的底面積是3,高是a,則3a表示這個圓柱體的體積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,PBA延長線上一點,PC切⊙O于點C,CG是⊙O的弦,CGAB,垂足為D.

(1)求證:∠PCA=ABC.

(2)過點AAEPC交⊙O于點E,交CD于點F,連接BE,若cosP=,CF=10,求BE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代第一部自成體系的數(shù)學(xué)專著,代表了東方數(shù)學(xué)的最高成就.它的算法體系至今仍在推動著計算機的發(fā)展和應(yīng)用.書中記載:今有圓材埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?譯為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸這木材,鋸口深1寸(ED=1寸),鋸道長1尺(AB=1=10寸),問這塊圓形木材的直徑是多少?

如圖所示,請根據(jù)所學(xué)知識計算:圓形木材的直徑AC是(  )

A. 13 B. 20 C. 26 D. 28

查看答案和解析>>

同步練習(xí)冊答案