【題目】用同樣規(guī)格的黑白兩種顏色的正方形,按如圖①的方式拼圖,請根據(jù)圖中的信息完成下列的問題
(1)在圖②中用了___________塊黑色正方形,在圖③中用了_____________塊黑色正方形;
(2)按如圖的規(guī)律繼續(xù)鋪下去,那么第個圖形要用____________塊黑色正方形;
(3)如果有足夠多的白色正方形,能不能恰好用完塊黑色正方形,拼出具有以上規(guī)律的圖形?如果可以請說明它是第幾個圖形;如果不能,說明你的理由.
【答案】(1)7,10;(2);(3)可以,它是第673個圖形
【解析】
(1)觀察如圖可直接得出答案;
(2)認(rèn)真觀察題目中給出的圖形,結(jié)合問題(1),通過分析,即可找到規(guī)律,得出答案;
(3)根據(jù)問題(2)中總結(jié)的規(guī)律,列出算式3n+1=2020,如果結(jié)果是整數(shù),則能夠拼出具有以上規(guī)律的圖形,否則,不能.
解:(1)觀察如圖可以發(fā)現(xiàn),圖②中用了7 塊黑色正方形,在圖③中用了10 塊黑色正方形;
故答案為:,;
(2)在圖①中,需要黑色正方形的塊數(shù)為:3×1+1=4;
在圖②中,需要黑色正方形的塊數(shù)為:3×2+1=7;
在圖③中,需要黑色正方形的塊數(shù)為:3×3+1=10;
由此可以發(fā)現(xiàn),第幾個圖形,需要黑色正方形的塊數(shù)就等于3乘以幾,然后加1.
所以,按如圖的規(guī)律繼續(xù)鋪下去,那么第n個圖形要用3n+1塊黑色正方形;
故答案為:;
(3)可以,假設(shè)第n個圖形恰好能用完2020塊黑色正方形,則
,
解得:,
∴它是第個圖形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,DE⊥AC,垂足為點E,∠AGF=∠ABC,∠BFG+∠BDE=180°,
求證:BF⊥AC.
請完成下面的證明的過程,并在括號內(nèi)注明理由.
證明:∵∠AGF=∠ABC(已知)
∴FG∥ ( )
∴∠BFG=∠FBC( )
∵∠BFG+∠BDE=180°(已知)
∴∠FBC+∠BDE=180°( )
∴BF∥DE( )
∴∠BFA= (兩直線平行,同位角相等)
∵DE⊥AC(已知)
∴∠DEA=90°( )
∴∠BFA=90°(等量代換)
∴BF⊥AC(垂直的定義)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1的坐標(biāo)為(2,0),過點A1作x軸的垂線交直線l:y=x于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸正半軸于點A2;再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點A3;….按此作法進(jìn)行下去,則的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的口袋里裝有紅、黃、綠三種顏色的小球(除顏色不同外其余都相同),其中紅球2個,黃球1個,從中任意摸出1球是黃球的概率是.
(1)試求口袋中綠球的個數(shù);
(2)小明第一次從口袋中任意摸出1球,不放回攪勻,第二次再摸出1球.請用列表或畫樹狀圖的方法求摸出“一綠一黃”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,點O是線段AD上一動點(不與點A、D重合),分別以AO和DO為邊在AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連結(jié)AC、BD相交于點E,連結(jié)OE.
(1)當(dāng)點O為AD的中點時,求∠DEA的度數(shù);
(2)在(1)的條件下,△ADE是軸對稱圖形嗎?如果是,指出它的對稱軸;如果不是,說明理由;
(3)當(dāng)點O不在AD的中點時,求證EO平分∠DEA.
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,AC與DF相交于點G.
(1) 試說明DF=CE;
(2) 若AC=BF=DF,求∠ACE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A在∠O的一邊OA上.按要求畫圖并填空:
(1)過點A畫直線AB ⊥OA,與∠O的另一邊相交于點B;
(2)過點A畫OB的垂線段AC,垂足為點C;
(3)過點C畫直線CD∥OA ,交直線AB于點D;
(4)∠CDB= °;
(5)如果OA=8,AB=6,OB=10,則點A到直線OB的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用2500元購進(jìn)A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價、標(biāo)價如下表所示.
類型 價格 | A型 | B型 |
進(jìn)價(元/盞) | 40 | 65 |
標(biāo)價(元/盞) | 60 | 100 |
(1)這兩種臺燈各購進(jìn)多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進(jìn)B種臺燈多少盞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用關(guān)于坐標(biāo)系軸對稱的點的坐標(biāo)的特點.
(1)畫出與△ABC 關(guān)于 y 軸對稱的圖形△A1B1C1;
(2)寫出各點坐標(biāo):△A1( ),B1( ),C1 ( ).
(3)直接寫出△ABC 的面積______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com