【題目】下列運算正確的是( )
A.(x﹣y)2=x2﹣y2
B.| ﹣2|=2﹣
C.﹣ =
D.﹣(﹣a+1)=a+1
【答案】B
【解析】解:A、原式=x2﹣2xy+y2 , 故本選項錯誤;
B、原式=2﹣ ,故本選項正確;
C、原式=2 ﹣ ,故本選項錯誤;
D、原式=a﹣1,故本選項錯誤;
故選:B.
【考點精析】根據(jù)題目的已知條件,利用二次根式的性質與化簡和去括號法則的相關知識可以得到問題的答案,需要掌握1、如果被開方數(shù)是分數(shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質把它寫成分式的形式,然后利用分母有理化進行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來;去括號、添括號,關鍵要看連接號.擴號前面是正號,去添括號不變號.括號前面是負號,去添括號都變號.
科目:初中數(shù)學 來源: 題型:
【題目】以坐標原點O為圓心,作半徑為2的圓,若直線y=﹣x+b與⊙O相交,則b的取值范圍是( )
A.0≤b<2
B.﹣2
C.﹣2 2
D.﹣2 <b<2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)和形是數(shù)學的兩個主要研究對象,我們經(jīng)常運用數(shù)形結合、數(shù)形轉化的方法解決一些數(shù)學問題.下面我們來探究“由數(shù)思形,以形助數(shù)”的方法在解決代數(shù)問題中的應用.
(1)探究一:求不等式|x﹣1|<2的解集
探究|x﹣1|的幾何意義
如圖①,在以O為原點的數(shù)軸上,設點A′對應的數(shù)是x﹣1,有絕對值的定義可知,點A′與點O的距離為|x﹣1|,可記為A′O=|x﹣1|.將線段A′O向右平移1個單位得到線段AB,此時點A對應的數(shù)是x,點B對應的數(shù)是1.因為AB=A′O,所以AB=|x﹣1|,因此,|x﹣1|的幾何意義可以理解為數(shù)軸上x所對應的點A與1所對應的點B之間的距離AB.
探究求方程|x﹣1|=2的解
因為數(shù)軸上3和﹣1所對應的點與1所對應的點之間的距離都為2,所以方程的解為3,﹣1.
探究:
求不等式|x﹣1|<2的解集
因為|x﹣1|表示數(shù)軸上x所對應的點與1所對應的點之間的距離,所以求不等式解集就轉化為求這個距離小于2的點對應的數(shù)x的范圍.
請在圖②的數(shù)軸上表示|x﹣1|<2的解集,并寫出這個解集.
(2)探究二:探究 的幾何意義
探究:
的幾何意義
如圖③,在直角坐標系中,設點M的坐標為(x,y),過M作MP⊥x軸于P,作MQ⊥y軸于Q,則P點坐標為(x,0),Q點坐標為(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,則MO= = = ,因此, 的幾何意義可以理解為點M(x,y)與點O(0,0)之間的距離MO.
探究:
的幾何意義
如圖④,在直角坐標系中,設點A′的坐標為(x﹣1,y﹣5),由探究二(1)可知,A′O= ,將線段A′O先向右平移1個單位,再向上平移5個單位,得到線段AB,此時點A的坐標為(x,y),點B的坐標為(1,5),因為AB=A′O,所以AB= ,因此 的幾何意義可以理解為點A(x,y)與點B(1,5)之間的距離AB.
探究 的幾何意義
①請仿照探究二的方法,在圖⑤中畫出圖形,并寫出探究過程.
② 的幾何意義可以理解為:
(3)拓展應用:
① + 的幾何意義可以理解為:點A(x,y)與點E(2,﹣1)的距離和點A(x,y)與點F(填寫坐標)的距離之和.
② + 的最小值為(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設BD=x,AE=y,求y關于x的函數(shù)關系式并寫出自變量x的取值范圍;
(3)當△ADE是等腰三角形時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】校園廣播主持人培訓班開展比賽活動,分為 A、B、C、D四個等級,對應的成績分別是9分、8分、7分、6分,根據(jù)如圖不完整的統(tǒng)計圖解答下列問題:
(1)補全下面兩個統(tǒng)計圖(不寫過程);
(2)求該班學生比賽的平均成績;
(3)現(xiàn)準備從等級A的4人(兩男兩女)中隨機抽取兩名主持人,請利用列表或畫樹狀圖的方法,求恰好抽到一男一女學生的概率?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y= x2+bx+c經(jīng)過點B(3,0),C(0,﹣2),直線l:y=﹣ x﹣ 交y軸于點E,且與拋物線交于A,D兩點,P為拋物線上一動點(不與A,D重合).
(1)求拋物線的解析式;
(2)當點P在直線l下方時,過點P作PM∥x軸交l于點M,PN∥y軸交l于點N,求PM+PN的最大值.
(3)設F為直線l上的點,以E,C,P,F(xiàn)為頂點的四邊形能否構成平行四邊形?若能,求出點F的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形、菱形、正方形都是平行四邊形,但它們都是有特殊條件的平行四邊形,正方形不僅是特殊的矩形,也是特殊的菱形.因此,我們可利用矩形、菱形的性質來研究正方形的有關問題.回答下列問題:
(1)將平行四邊形、矩形、菱形、正方形填入它們的包含關系的下圖中.
(2)要證明一個四邊形是正方形,可先證明四邊形是矩形,再證明這個矩形的相等;或者先證明四邊形是菱形,在證明這個菱形有一個角是 .
(3)某同學根據(jù)菱形面積計算公式推導出對角線長為a的正方形面積是S=0.5a2 , 對此結論,你認為是否正確?若正確,請說明理由;若不正確,請舉出一個反例說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com