【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 , 為什么?

【答案】
(1)解:設(shè)所圍矩形ABCD的長(zhǎng)AB為x米,則寬AD為 (80﹣x)米

依題意,得x (80﹣x)=750

即,x2﹣80x+1500=0,

解此方程,得x1=30,x2=50

∵墻的長(zhǎng)度不超過(guò)45m,∴x2=50不合題意,應(yīng)舍去

當(dāng)x=30時(shí), (80﹣x)= ×(80﹣30)=25,

所以,當(dāng)所圍矩形的長(zhǎng)為30m、寬為25m時(shí),能使矩形的面積為750m2


(2)解:不能.

因?yàn)橛蓌 (80﹣x)=810得x2﹣80x+1620=0

又∵b2﹣4ac=(﹣80)2﹣4×1×1620=﹣80<0,

∴上述方程沒(méi)有實(shí)數(shù)根

因此,不能使所圍矩形場(chǎng)地的面積為810m2

說(shuō)明:如果未知數(shù)的設(shè)法不同,或用二次函數(shù)的知識(shí)解答,只要過(guò)程及結(jié)果正確,請(qǐng)參照給分.


【解析】(1)設(shè)所圍矩形ABCD的長(zhǎng)AB為x米,則寬AD為 (80﹣x)米,根據(jù)矩形面積的計(jì)算方法列出方程求解.(2)假使矩形面積為810,則x無(wú)實(shí)數(shù)根,所以不能?chē)删匦螆?chǎng)地.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形紙片ABCD中,∠A=60°,將紙片折疊,點(diǎn)A、D分別落在點(diǎn)A′、D′處,且A′D′經(jīng)過(guò)點(diǎn)B,EF為折痕,當(dāng)D′F⊥CD時(shí), 的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有白、紅、黑三種顏色的小球,其中白球2只,紅球1只,黑球1只,它們除了顏色之外沒(méi)有其它區(qū)別,從袋中隨機(jī)地摸出1只球,記錄下顏色后放回?cái)噭,再摸出第二只球并記錄顏色,求兩次都摸出白球的概率?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,點(diǎn)P、Q分別在邊AB、BC上,且AP=BQ.
(1)求證:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過(guò)45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.

(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 , 為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).

(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠A=36°,且BC=2,則AB=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù)且a≠0)的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)四邊形的兩條對(duì)角線互相垂直且相等,則稱(chēng)這個(gè)四邊形為“奇妙四邊形”.如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱(chēng)四邊形ABCD為奇妙四邊形.根據(jù)“奇妙四邊形”對(duì)角線互相垂直的特征可得“奇妙四邊形”的一個(gè)重要性質(zhì):“奇妙四邊形”的面積等于兩條對(duì)角線乘積的一半.根據(jù)以上信息回答:

(1)矩形“奇妙四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”,若⊙O的半徑為6,∠BCD=60°.求“奇妙四邊形”ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是“奇妙四邊形”作OM⊥BC于M.請(qǐng)猜測(cè)OM與AD的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案