【題目】如圖,已知AB∥CF,DE∥CF,DE與BC交于點P,若∠ABC=70°,∠CDE=130°.
(1)試判斷∠ABP與∠BPD之間的數(shù)量關(guān)系,并說明理由;
(2)求∠BCD的度數(shù).
【答案】(1)∠ABP=∠BPD,理由見解析;(2)∠BCD=20°.
【解析】
(1)根據(jù)AB∥CF,DE∥CF,可得AB∥DE,進(jìn)而得出∠ABP=∠BPD;
(2)由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF-∠DCF可求.
(1)∠ABP=∠BPD,
理由:∵AB∥CF,DE∥CF,
∴AB∥DE,
∴∠ABP=∠BPD;
(2)∵AB∥CF,∠ABC=70°,
∴∠BCF=∠ABC=70°,
又∵DE∥CF,∠CDE=130°,
∴∠DCF+∠CDE=180°,
∴∠DCF=50°,
∴∠BCD=∠BCF-∠DCF=70°-50°=20°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB和CD相交于點O,∠DOE=90°,若∠BOE=∠AOC,
(1)指出與∠BOD相等的角,并說明理由.
(2)求∠BOD,∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點A、B的坐標(biāo)分別為(1,0)、(4,0),將△ABC沿x軸向右平移,當(dāng)點C落在直線y=2x﹣6上時,線段BC掃過的面積為 cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形紙片OABC放入平面直角坐標(biāo)系中,使OA、OC分別落在x、y軸上,連接AC,將紙片OABC沿AC折疊,使點B落在點D的位置.若點B的坐標(biāo)為(2,4),則點D的橫坐標(biāo)是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖①,AB∥CD,點E在直線AB與CD之間,連結(jié)AE、BE,試說明∠BEE+∠DCE=∠AEC.下面給出了這道題的解題過程,請完成下面的解題過程,并填空(理由或數(shù)學(xué)式):
解:如圖①,過點E作EF∥AB
∴∠BAE=∠1( )
∵AB∥CD( )
∴CD∥EF( )
∴∠2=∠DCE
∴∠BAE+∠DCE=∠1+∠2( )
∴∠BAE+∠DCE=∠AEC
(探究)當(dāng)點E在如圖②的位置時,其他條件不變,試說明∠AEC+∠FGC+∠DCE=360°;
(應(yīng)用)點E、F、G在直線AB與CD之間,連結(jié)AE、EF、FG和CG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+∠AEF+∠FGC+∠DCG= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知兩個全等直角三角形的直角頂點及一條直角邊重合,將△ABC繞點C按順時針方向旋轉(zhuǎn)到△A′CB′的位置,其中A′C交直線AD于點E,A′B′分別交直線AD,AC于點F,G.則旋轉(zhuǎn)后的圖中,全等三角形共有( 。
A. 2對 B. 3對 C. 4對 D. 5對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在學(xué)習(xí)了《銳角三角函數(shù)》以后,開展測量物體高度的實踐活動,測量一建筑物CD的高度,他們站在B處仰望樓頂C,測得仰角為30°,再往建筑物方向走20m,到達(dá)點F處測得樓頂C的仰角為45°(BFD在同一直線上).已知觀測員的眼睛與地面距離為1.5m(即AB=1.5m),求這棟建筑物CD的高度.(參考數(shù)據(jù): ≈1.732, ≈1.414.結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=(為常數(shù)),點C為直線AB上一點,點P、Q分別在線段BC、AC上,且滿足CQ=2AQ,CP=2BP.
(1)如圖,當(dāng)點C恰好在線段AB中點時,則PQ=_______(用含的代數(shù)式表示);
(2)若點C為直線AB上任一點,則PQ長度是否為常數(shù)?若是,請求出這個常數(shù);若不是,請說明理由;
(3)若點C在點A左側(cè),同時點P在線段AB上(不與端點重合),請判斷2AP+CQ-2PQ與1的大小關(guān)系,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com