【題目】某食品廠(chǎng)生產(chǎn)一種半成品食材,成本為2/千克,每天的產(chǎn)量(百千克)與銷(xiāo)售價(jià)格(元/千克)滿(mǎn)足函數(shù)關(guān)系式,從市場(chǎng)反饋的信息發(fā)現(xiàn),該半成品食材每天的市場(chǎng)需求量(百千克)與銷(xiāo)售價(jià)格(元/千克)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:

銷(xiāo)售價(jià)格(元/千克)

2

4

……

10

市場(chǎng)需求量(百千克)

12

10

……

4

已知按物價(jià)部門(mén)規(guī)定銷(xiāo)售價(jià)格不低于2/千克且不高于10/千克.

1)直接寫(xiě)出的函數(shù)關(guān)系式,并注明自變量的取值范圍;

2)當(dāng)每天的產(chǎn)量小于或等于市場(chǎng)需求量時(shí),這種半成品食材能全部售出,而當(dāng)每天的產(chǎn)量大于市場(chǎng)需求量時(shí),只能售出符合市場(chǎng)需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄.

①當(dāng)每天的半成品食材能全部售出時(shí),求的取值范圍;

②求廠(chǎng)家每天獲得的利潤(rùn)y(百元)與銷(xiāo)售價(jià)格的函數(shù)關(guān)系式;

3)在(2)的條件下,當(dāng)______/千克時(shí),利潤(rùn)有最大值;若要使每天的利潤(rùn)不低于24(百元),并盡可能地減少半成品食材的浪費(fèi),則應(yīng)定為______/千克.

【答案】1,其中;(2;(3,5

【解析】

(1)設(shè)的函數(shù)關(guān)系式為:,根據(jù)表格中的數(shù)據(jù)利用待定系數(shù)法進(jìn)行求解即可;

(2)①當(dāng)每天的半成品食材能全部售出時(shí),有,據(jù)此列不等式進(jìn)行求解即可;

根據(jù)自變量為兩種情況分別列式進(jìn)行求解即可;

(3)根據(jù)(2)中的情況利用二次函數(shù)的性質(zhì)分別進(jìn)行討論即可求得答案.

(1)由表格的數(shù)據(jù),設(shè)的函數(shù)關(guān)系式為:

根據(jù)表格的數(shù)據(jù)得,解得,

的函數(shù)關(guān)系式為:,其中;

(2)①當(dāng)每天的半成品食材能全部售出時(shí),有,

,解得,

,所以此時(shí),

可知,當(dāng)時(shí),

當(dāng)時(shí),,

即有;

(3)當(dāng)時(shí),

的對(duì)稱(chēng)軸為

當(dāng)時(shí),y隨著x的增大而增大,

時(shí)有最大值,,

當(dāng)時(shí),,

,,

時(shí)取最大值,

即此時(shí)有最大利潤(rùn),

要使每天的利潤(rùn)不低于24百元,則當(dāng)時(shí),顯然不符合,

,解得,

故當(dāng)時(shí),能保證不低于24百元,

故答案為:5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是拋物線(xiàn)對(duì)稱(chēng)軸上的一點(diǎn),連接OA,以A為旋轉(zhuǎn)中心將AO逆時(shí)針旋轉(zhuǎn)90°得到AO′,當(dāng)O′恰好落在拋物線(xiàn)上時(shí),點(diǎn)A的坐標(biāo)為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形紙片中,對(duì)角線(xiàn)交于點(diǎn),折疊正方形紙片,使落在上,點(diǎn)恰好與上的點(diǎn)重合,展開(kāi)后,折痕分別交、于點(diǎn),連結(jié),則下列結(jié)論:①;②;③;④四邊形是菱形;⑤,其中正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M是平行四邊形ABCDAB邊的中點(diǎn),CMBD相交于點(diǎn)E,設(shè)平行四邊形ABCD的面積為1,則圖中陰影部分的面積是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】老師隨機(jī)抽查了本學(xué)期學(xué)生讀課外書(shū)冊(cè)數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.

1)求條形圖中被遮蓋的數(shù),并計(jì)算冊(cè)數(shù)的平均數(shù)和中位數(shù);

2)隨后又補(bǔ)查了另外幾人,得知最少的讀了6冊(cè),將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊(cè)數(shù)的中位數(shù)沒(méi)改變,則最多補(bǔ)查了__________.從補(bǔ)查結(jié)果看,學(xué)生的讀書(shū)冊(cè)數(shù)的平均數(shù)與之前相比______________.(變大、變小、不變).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的切線(xiàn),切點(diǎn)為B,OA交⊙O于點(diǎn)C,過(guò)點(diǎn)C的切線(xiàn)交AB于點(diǎn)D.若∠BAO30°,CD2

1)求⊙O的半徑;

2)若點(diǎn)P上運(yùn)動(dòng),設(shè)點(diǎn)P到直線(xiàn)BC的距離為x,圖中陰影部分的面積為y,求yx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某貨車(chē)銷(xiāo)售公司,分別試銷(xiāo)售兩種型號(hào)貨車(chē)各一個(gè)月,并從中選擇一種長(zhǎng)期銷(xiāo)售,設(shè)每月銷(xiāo)售量為x輛若銷(xiāo)售甲型貨車(chē),每月銷(xiāo)售的利潤(rùn)為y1(萬(wàn)元),已知每輛甲型貨車(chē)的利潤(rùn)為(m+6)萬(wàn)元,(m是常數(shù),9m11),每月還需支出其他費(fèi)用8萬(wàn)元,受條件限制每月最多能銷(xiāo)售甲型貨車(chē)25輛;若銷(xiāo)售乙型貨車(chē),每月的利潤(rùn)y2(萬(wàn)元)x的函數(shù)關(guān)系式為y2=ax2+bx-25,且當(dāng)x10時(shí),y220,當(dāng)x20時(shí),y255,受條件限制每月最多能銷(xiāo)售乙型貨車(chē)40輛.

(1)分別求出y1、y2x的函數(shù)關(guān)系式,并確定x的取值范范圍;

(2)分別求出銷(xiāo)售這兩種貨車(chē)的最大月利潤(rùn);(最大利潤(rùn)能求值的求值,不能求值的用式子表示)

(3)為獲得最大月利潤(rùn),該公司應(yīng)該選擇銷(xiāo)售哪種貨車(chē)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形中,,,點(diǎn)在邊上,把沿翻折后,點(diǎn)落在處.若恰為等腰三角形,則的長(zhǎng)為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某數(shù)學(xué)活動(dòng)小組在一次活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:

(問(wèn)題發(fā)現(xiàn))如圖1,正方形ABCD的四個(gè)頂點(diǎn)都在⊙O上,若點(diǎn)E在弧AB上,FDE上的一點(diǎn),且DFBE.試說(shuō)明:△ADF≌△ABE;

(變式探究)如圖2,若點(diǎn)E在弧AD上,過(guò)點(diǎn)AAMBE,請(qǐng)說(shuō)明線(xiàn)段BEDE、AM之間滿(mǎn)足等量關(guān)系:BEDE2AM;

(解決問(wèn)題)如圖3,在正方形ABCD中,CD2,若點(diǎn)P滿(mǎn)足PD2,且∠BPD90°,請(qǐng)直接寫(xiě)出點(diǎn)ABP的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案