【題目】如圖,矩形中,,,點在邊上,把沿翻折后,點落在處.若恰為等腰三角形,則的長為______.

【答案】2

【解析】

分兩種情況討論:①當(dāng)C′A=C′B時,易得HC′=FC′=1,然后求出DH,再利用K字型相似可得△DHC′∽△C′FE,進而求出EF,然后根據(jù)CE=CF-EF即得出結(jié)果;②當(dāng)AB=AC′時,易得四邊形CEC′D是正方形,所以CE=2

如圖1中,當(dāng)C′A=C′B時,作C′H⊥ADHBCF

C′A=C′B

∴∠C′AB=C′BA

∴∠C′AH=C′BF

在△AHC'和△BFC'中,

∵∠AHC'=BF C',∠C′AH=C′BFC′A=C′B

∴△AHC'≌△BFC'AAS

HC′=FC′=1,在RtDHC′中,DH=

∵∠DC'E=DCE=90°

∴∠DC'H+EC'F=90°,

又∵∠DC'H+HDC'=90°,

∴∠EC'F=HDC'

又∵∠DHC'=EFC'=90°,

∴△DHC′∽△C′FE,

EF=

∵四邊形DHFC是矩形,

CF=DH=

CE=CF-EF=

如圖2中,當(dāng)AB=AC′時,點C′AD上,此時四邊形CEC′D是正方形,CE=2

綜上所述,滿足條件的CE的值為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技公司推出一款新的電子產(chǎn)品,該產(chǎn)品有三種型號.通過市場調(diào)研后,按三種型號受消費者喜愛的程度分別對A型、B型、C型產(chǎn)品在成本的基礎(chǔ)上分別加價20%,30%,45%出售(三種型號的成本相同).經(jīng)過一個季度的經(jīng)營后,發(fā)現(xiàn)C型產(chǎn)品的銷量占總銷量的,且三種型號的總利潤率為35%.第二個季度,公司決定對A型產(chǎn)品進行升級,升級后A產(chǎn)品的成本提高了25%,銷量提高了20%;B、C產(chǎn)品的銷量和成本均不變,且三種產(chǎn)品在二季度成本基礎(chǔ)上分別加價20%,30%,45%出售,則第二個季度的總利潤率為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某食品廠生產(chǎn)一種半成品食材,成本為2/千克,每天的產(chǎn)量(百千克)與銷售價格(元/千克)滿足函數(shù)關(guān)系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材每天的市場需求量(百千克)與銷售價格(元/千克)滿足一次函數(shù)關(guān)系,部分數(shù)據(jù)如表:

銷售價格(元/千克)

2

4

……

10

市場需求量(百千克)

12

10

……

4

已知按物價部門規(guī)定銷售價格不低于2/千克且不高于10/千克.

1)直接寫出的函數(shù)關(guān)系式,并注明自變量的取值范圍;

2)當(dāng)每天的產(chǎn)量小于或等于市場需求量時,這種半成品食材能全部售出,而當(dāng)每天的產(chǎn)量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄.

①當(dāng)每天的半成品食材能全部售出時,求的取值范圍;

②求廠家每天獲得的利潤y(百元)與銷售價格的函數(shù)關(guān)系式;

3)在(2)的條件下,當(dāng)______/千克時,利潤有最大值;若要使每天的利潤不低于24(百元),并盡可能地減少半成品食材的浪費,則應(yīng)定為______/千克.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投資新建了一商場,共有商鋪30.據(jù)預(yù)測,當(dāng)每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5 000,少租出商鋪1.該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5 000.

1)當(dāng)每間商鋪的年租金定為13萬元時,能租出多少間?

2)當(dāng)每間商鋪的年租金定為多少萬元時,該公司的年收益(收益=租金-各種費用)為275萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=x與反比例函數(shù)y=k0)的圖象交于A、B兩點,且點A的橫坐標(biāo)為4

1)求k的值;

2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

3)過原點O的另一條直線l交雙曲線y=k0)于P、Q兩點(P點在第一象限),若由點A、PB、Q為頂點組成的四邊形面積為24,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負半軸上,O是坐標(biāo)原點,tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點C,與AB交于點D,若COD的面積為20,則k的值等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮用6張背面完全相同的紙牌進行摸牌游戲,游戲規(guī)則如下:將牌面分別標(biāo)有數(shù)字1、3、6的三張紙牌給小明,將牌面分別標(biāo)有數(shù)字2、45的三張紙牌給小亮,小明小亮分別將紙牌背面朝上,從各自的三張紙牌中隨機抽出一張,并將抽出的兩張卡片上的數(shù)字相加,如果和為偶數(shù),則小明獲勝;如果和為奇數(shù),則小亮獲勝.

(1)小明抽到標(biāo)有數(shù)字6的紙牌的概率為 ;

(2)請用樹狀圖或列表的方法求小亮獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,D的中點,連接OD交弦AC于點F,過點DDEAC,交BA的延長線于點E

1)求證:DE是⊙O的切線;

2)連接CD,若OA=AE=4,求四邊形ACDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】麗水苛公司將麗水山耕農(nóng)副產(chǎn)品運往杭州市場進行銷售.記汽車行駛時間為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應(yīng)值如下表:

v(千米/小時)

75

80

85

90

95

t(小時)

4.00

3.75

3.53

3.33

3.16

(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關(guān)于行駛時間t(小時)的函數(shù)表達式;

(2)汽車上午7:30從麗水出發(fā),能否在上午10:00之前到達杭州市?請說明理由:

(3)若汽車到達杭州市場的行駛時間t滿足3.5≤t≤4,求平均速度v的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案