【題目】如圖,M是平行四邊形ABCD的AB邊的中點,CM與BD相交于點E,設(shè)平行四邊形ABCD的面積為1,則圖中陰影部分的面積是__________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+2x+3與x軸交于點A,B(點A在點B的左邊),與y軸交于點C.
(1)如圖1,點P,Q都在直線BC上方的拋物線上,且點P的橫坐標(biāo)比點Q的橫坐標(biāo)小1,直線PQ與x軸交于點D,過點P,Q作直線BC的垂線,垂足分別為點E,F.當(dāng)PE+QF的值最大時,將四邊形PEFQ沿射線PQ方向平移,記平移過程中的四邊形PEFQ為P1E1F1Q1,連接CP1,P1F1,求CP1+P1F1+Q1D的最小值,并求出對應(yīng)的點Q1的坐標(biāo).
(2)如圖2,對于滿足(1)中條件的點Q1,將線段AQ1繞原點O順時針旋轉(zhuǎn)90°,得線段A1Q2,點M是拋物線對稱軸上一點,點N是坐標(biāo)平面內(nèi)一點,點N1是點N關(guān)于直線A1Q2的對稱點,若以點A1,Q1,M,N1為頂點的四邊形是一個矩形,請直接寫出所有符合條件的點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技公司推出一款新的電子產(chǎn)品,該產(chǎn)品有三種型號.通過市場調(diào)研后,按三種型號受消費者喜愛的程度分別對A型、B型、C型產(chǎn)品在成本的基礎(chǔ)上分別加價20%,30%,45%出售(三種型號的成本相同).經(jīng)過一個季度的經(jīng)營后,發(fā)現(xiàn)C型產(chǎn)品的銷量占總銷量的,且三種型號的總利潤率為35%.第二個季度,公司決定對A型產(chǎn)品進行升級,升級后A產(chǎn)品的成本提高了25%,銷量提高了20%;B、C產(chǎn)品的銷量和成本均不變,且三種產(chǎn)品在二季度成本基礎(chǔ)上分別加價20%,30%,45%出售,則第二個季度的總利潤率為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+6經(jīng)過點A(﹣2,0),B(4,0),與y軸交于點C.點D是拋物線上的一個動點,點D的橫坐標(biāo)為m(1<m<4),連接AC,BC,DB,DC.
(1)求拋物線的解析式.
(2)當(dāng)△BCD的面積等于△AOC的面積的時,求m的值.
(3)在拋物線的對稱軸上是否存在一點Q,使得△QAC的周長最小,若存在,求出點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】線段在平面直角坐標(biāo)系中的位置如圖所示,為坐標(biāo)原點.若線段上一點的坐標(biāo)為,則直線與線段的交點的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品廠生產(chǎn)一種半成品食材,成本為2元/千克,每天的產(chǎn)量(百千克)與銷售價格(元/千克)滿足函數(shù)關(guān)系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材每天的市場需求量(百千克)與銷售價格(元/千克)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:
銷售價格(元/千克) | 2 | 4 | …… | 10 |
市場需求量(百千克) | 12 | 10 | …… | 4 |
已知按物價部門規(guī)定銷售價格不低于2元/千克且不高于10元/千克.
(1)直接寫出與的函數(shù)關(guān)系式,并注明自變量的取值范圍;
(2)當(dāng)每天的產(chǎn)量小于或等于市場需求量時,這種半成品食材能全部售出,而當(dāng)每天的產(chǎn)量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄.
①當(dāng)每天的半成品食材能全部售出時,求的取值范圍;
②求廠家每天獲得的利潤y(百元)與銷售價格的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)為______元/千克時,利潤有最大值;若要使每天的利潤不低于24(百元),并盡可能地減少半成品食材的浪費,則應(yīng)定為______元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司投資新建了一商場,共有商鋪30間.據(jù)預(yù)測,當(dāng)每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5 000元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5 000元.
(1)當(dāng)每間商鋪的年租金定為13萬元時,能租出多少間?
(2)當(dāng)每間商鋪的年租金定為多少萬元時,該公司的年收益(收益=租金-各種費用)為275萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D為的中點,連接OD交弦AC于點F,過點D作DE∥AC,交BA的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)連接CD,若OA=AE=4,求四邊形ACDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com