【題目】(1)問題發(fā)現
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上,填空:線段AD,BE之間的關系為
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請判斷AD,BE的關系,并說明理由.
(3)解決問題
如圖3,線段PA=,點B是線段PA外一點,PB=3,連接AB繞點A逆時針旋轉90°得到線段AC,隨著點B的位置變化,直接寫出PC的范圍.
【答案】(1)AD=BE,AD⊥BE;(2)AD=BE,AD⊥BE,理由見解析;(3)1≤PC≤5.
【解析】
(1)可先證明△ACE≌△BCD,再根據全等三角形的對應邊相等可證得AE=BD,延長BD交AE于點F,由△ACE≌△BCD,再結合條件可得到∠ADF+∠FAD=90°,可得到AE⊥BD;
(2)仿照(1)先證明△ACE≌△BCD,可得AE=BD,再轉換得到∠BOH+∠OBH=90°,可得到AE⊥BD;
(3)如圖3中,作AE⊥AP,使得AE=PA,則易證△APE≌△ACP,可得PC=BE,求出BE的范圍即可解決問題.
解:(1)結論:AD=BE,AD⊥BE,
理由:如圖1中,
∵△ACB與△DCE均為等腰直角三角形,
∴AC=BC,CE=CD,
∠ACB=∠ACD=90°,
在△ACD和△BCE中
∴△ACD≌△BCE(SAS),
∴AD=BE,∠EBC=∠CAD,
延長BE交AD于點F,
∵BC⊥AD,
∴∠EBC+∠CEB=90°,
∵∠CEB=AEF,
∴∠EAD+∠AEF=90°,
∴∠AFE=90°,即AD⊥BE,
∴AD=BE,AD⊥BE,
故答案為AD=BE,AD⊥BE;
(2)結論:AD=BE,AD⊥BE,
理由:如圖2中,設AD交BE于H,AD交BC于O,
∵△ACB與△DCE均為等腰直角三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=90°,
∴ACD=∠BCE,
在△ACD和△BCE中
∴△ACD≌△BCE(SAS),
∴AD=BE,∠CAD=∠CBE,
∵∠CAO+∠AOC=90°,∠AOC=∠BOH,
∴∠BOH+∠OBH=90°,
∴∠OHB=90°,
∴AD⊥BE,
∴AD=BE,AD⊥BE;
(3)如圖3中,作AE⊥AP,使得AE=PA,
∴∠EAP=90°,
∵連接AB繞點A逆時針旋轉90°得到線段AC,
∴AB=AC,∠BAC=90°,
∴∠EAP+∠PAB=∠BAC+∠PAB,
∴∠EAB=∠PAC,
在△EAB和△PAC中
∴△EAB≌△PAC(SAS),
∴PC=BE,
∵PA=,
在等腰直角△PAE中,
PE=,
圖3-1中,當P、E、B共線時,BE最小,最小值=PB-PE=1,
圖3-2中,當P、E、B共線時,BE最大,最大值=PB+PE=5,
∴1≤BE≤5,即1≤PC≤5.
科目:初中數學 來源: 題型:
【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A'B'C'的位置,已知△ABC的面積為9,陰影部分三角形的面積為4.若AA'=1,則A'D等于( )
A. 2 B. 3 C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知∠PAQ=36°,點B為射線AQ上一固定點,按以下步驟作圖:①分別以A,B為圓心,大于AB的長為半徑畫弧,相交于兩點M,N;②作直線MN交射線AP 于點D,連接 BD;③以B為圓心,BA長為半徑畫弧,交射線AP 于點C; 根據以上作圖過程及所作圖形,下列結論中錯誤的是( )
A.∠CDB=72°B.△ADB∽△ABCC.CD:AD=2:1D.∠ABC=3∠ACB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統計結果繪制了如下兩幅不完整的統計圖,請結合圖中所給的信息解答下列問題:
(1)這次統計共抽查了多少名學生?在扇形統計圖中,表示" "的扇形圓心角的度數是多少;
(2)將條形統計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用 “微信”進行溝通的學生大約有多少名?
(4)某天甲、乙兩名同學都想從“微信"、""、“電話"三種溝通方式中選一種方式與對方聯系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有專家指出:人為型空氣污染(如汽車尾氣排放等)是霧霾天氣的重要成因.某校為倡議“每人少開一天車,共建綠色家園”,想了解學生上學的交通方式.九年級(8)班的5名同學聯合設計了一份調查問卷.對該校部分學生進行了隨機調查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式)設置選項,要求被調查同學從中單選.并將調查結果繪制成條形統計圖1和扇形統計圖2,根據以上信息,解答下列問題:
(1)本次接受調查的總人數是 人,扇形統計圖中“騎自行車”所在扇形的圓心角度數是 度,請補全條形統計圖;
(2)已知這5名學生中有2名女同學,要從這5名學生中任選兩名同學匯報調查結果.請用列表法或畫樹狀圖的方法,求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABO是正三角形,CD∥AB,把△ABO繞△OCD的內心P旋轉180°得到△EFG
(1)在圖中畫出點P和△EFG,保留畫圖痕跡,簡要說明理由
(2)若AO=3,CD=2,求A點運動到E點路徑的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】目前,步行已成為人們最喜愛的健身方式之一,通過手機可以計算行走的步數與相應的能量消耗.對比手機數據發(fā)現,小明步行消耗330000卡能量的步數與小紅步行消耗300000卡能量的步數相同.已知小明平均每步消耗的能量比小紅平均每步消耗的能量多3卡,求小紅平均每步消耗能量的卡數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,等邊三角形OAB的一條邊OB在x軸的正半軸上,點A在雙曲線y=(k≠0)上,其中點B為(2,0).
(1)求k的值及點A的坐標
(2)△OAB沿直線OA平移,當點B恰好在雙曲線上時,求平移后點A的對應點A’的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形中,是的中點.請按要求完成下列作圖,
①僅用無刻度直尺,不能用直尺中的直角;②保留作圖痕跡
(1)在圖1中,過點作的平行線,與交于點.
(2)在圖2中,作線段的中垂線,垂足為點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com