【題目】某高中學(xué)校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學(xué)生即將所穿校服型號情況進(jìn)行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標(biāo)準(zhǔn),共分為6個型號)
根據(jù)以上信息,解答下列問題:
(1)該班共有名學(xué)生;
(2)在扇形統(tǒng)計圖中,185型校服所對應(yīng)的扇形圓心角的大小為;
(3)該班學(xué)生所穿校服型號的眾數(shù)為 , 中位數(shù)為;
(4)如果該校預(yù)計招收新生600名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學(xué)生大約有多少名?
【答案】
(1)50
(2)14.4°
(3)165和170;170
(4)
解:600× =180(人),
所以估計新生穿170型校服的學(xué)生大約有180名
【解析】解:(1.)該班共有的學(xué)生數(shù)=15÷30%=50(人);
(2.)175型的人數(shù)=50×20%=10(人),則185型的人數(shù)=50﹣3﹣15﹣10﹣5﹣5=12,
所以在扇形統(tǒng)計圖中,185型校服所對應(yīng)的扇形圓心角=360°× =14.4°;
(3.)該班學(xué)生所穿校服型號的眾數(shù)為165和170,中位數(shù)為170;
所以答案是50,14.4°,165和170,170;
【考點精析】關(guān)于本題考查的扇形統(tǒng)計圖和條形統(tǒng)計圖,需要了解能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于與坐標(biāo)軸不平行的直線l和點P,給出如下定義:過點P作x軸,y軸的垂線,分別交直線l于點M,N,若PM+PN≤4,則稱P為直線l的近距點,特別地,直線上l所有的點都是直線l的近距點.已知點A(-,0),B(0,2),C(-2,2).
(1)當(dāng)直線l的表達(dá)式為y=x時,
①在點A,B,C中,直線l的近距點是 ;
②若以OA為邊的矩形OAEF上所有的點都是直線l的近距點,求點E的縱坐標(biāo)n的取值范圍;
(2)當(dāng)直線l的表達(dá)式為y=kx時,若點C是直線l的近距點,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,,,E、F分別是AB、CD的中點
求證:四邊形AECF是平行四邊形;
是否存在a的值使得四邊形AECF為菱形,若存在求出a的值,若不存在說明理由;
如圖,點P是線段AF上一動點且
求證:;
直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點A順指針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進(jìn)行下去…,若點A( ,0),B(0,4),則點B2016的橫坐標(biāo)為( )
A.5
B.12
C.10070
D.10080
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示∠AOB的紙片,OC平分∠AOB,如圖2把∠AOB沿OC對折成∠COB(OA與OB重合),從O點引一條射線OE,使∠BOE=∠EOC,再沿OE把角剪開,若剪開后得到的3個角中最大的一個角為76°,則∠AOB=_____________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一次函數(shù)y=kx+b,當(dāng)自變量x的取值為﹣2≤x≤5時,相應(yīng)的函數(shù)值的范圍為﹣6≤y≤﹣3,則該函數(shù)的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,射線OC從OA開始,繞點O逆時針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘20°;射線OD從OB開始,繞點O逆時針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘5°,OC和OD同時旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時間為t(0≤t≤15).
(1)當(dāng)t為何值時,射線OC與OD重合;
(2)當(dāng)t為何值時,∠COD=90°;
(3)試探索:在射線OC與OD旋轉(zhuǎn)的過程中,是否存在某個時刻,使得射線OC,OB與OD中的某一條射線是另兩條射線所夾角的角平分線?若存在,請求出所有滿足題意的t的取值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系上,△ABC的頂點A和C分別在x軸、y軸的正半軸上,且AB∥y軸,點B(1,3),將△ABC以點B為旋轉(zhuǎn)中心順時針方向旋轉(zhuǎn)90°得到△DBE,恰好有一反比例函數(shù)y= 圖象恰好過點D,則k的值為( )
A.6
B.﹣6
C.9
D.﹣9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com