如圖,在Rt△ABC中,∠A=90°,O是BC邊上一點,以O為圓心的半圓與AB邊相切于點D,與AC、BC邊分別交于點E、F、G,連接OD,已知BD=2,AE=3,tan∠BOD=.
(1)求⊙O的半徑OD;
(2)求證:AE是⊙O的切線;
(3)求圖中兩部分陰影面積的和.
(1)3;(2)證明見解析;(3).
【解析】
試題分析:(1)由AB為圓O的切線,利用切線的性質(zhì)得到OD垂直于AB,在直角三角形BDO中,利用銳角三角函數(shù)定義,根據(jù)tan∠BOD及BD的值,求出OD的值即可;
(2)連接OE,由AE=OD=3,且OD與AE平行,利用一組對邊平行且相等的四邊形為平行四邊形,根據(jù)平行四邊形的對邊平行得到OE與AD平行,再由DA與AE垂直得到OE與AC垂直,即可得證;
(3)陰影部分的面積由三角形BOD的面積+三角形ECO的面積-扇形DOF的面積-扇形EOG的面積,求出即可.
試題解析:(1)∵AB與圓O相切,
∴OD⊥AB,
在Rt△BDO中,BD=2,tan∠BOD=,
∴OD=3;
(2)連接OE,
∵AE=OD=3,AE∥OD,
∴四邊形AEOD為平行四邊形,
∴AD∥EO,
∵DA⊥AE,
∴OE⊥AC,
又∵OE為圓的半徑,
∴AE為圓O的切線;
(3)∵OD∥AC,
∴,即,
∴AC=7.5,
∴EC=AC-AE=7.5-3=4.5,
∴S陰影=S△BDO+S△OEC-S扇形FOD-S扇形EOG
=×2×3+×3×4.5-
=3+-
=.
考點: 1.切線的判定與性質(zhì);2.扇形面積的計算.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com