【題目】已知中,邊的長(zhǎng)與邊上的高的和為,當(dāng)面積最大時(shí),則其周長(zhǎng)的最小值為________(用含的代數(shù)式表示).
【答案】
【解析】
設(shè)BC上的高為x,則BC=a﹣x,△ABC的面積為S,S=x(a﹣x),根據(jù)二次函數(shù)的頂點(diǎn)坐標(biāo),可得出x的值,過點(diǎn)A作直線l∥BC,再作出點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)E,連接CE,交l于點(diǎn)F,可得△CBE是直角三角形,根據(jù)勾股定理求出CE的長(zhǎng),從而得出周長(zhǎng)的最小值.
設(shè)BC上的高為x.
∵邊BC的長(zhǎng)與BC邊上的高的和為a,∴BC=a﹣x,設(shè)△ABC的面積為S,∴S=x(a﹣x)=﹣x2+ax.
∵當(dāng)△ABC面積最大時(shí),∴x=a,∴BC=a,過點(diǎn)A作直線l∥BC,再作出點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)E,連接CE,交l于點(diǎn)F,當(dāng)點(diǎn)A與點(diǎn)F重合時(shí),△ABC周長(zhǎng)的最小值,∴BG=GE=AD=a,∴BE=a.
∵直線l∥BC,∴∠EBC=∠EGA=90°,∴CE==a,∴△ABC的最小周長(zhǎng)=a.
故答案為:a.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一張圓心角為108°,半徑為4cm的扇形紙片,小紅剪去圓心角為θ的部分扇形紙片后,將剩下的紙片制作成一個(gè)底面半徑為1cm的圓錐形紙帽(接縫處不重疊),則剪去的扇形紙片的面積為( ).
A.0.8πcm2 B.3.2πcm2 C.4πcm2 D.4.8πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:
對(duì)于兩個(gè)不等的非零實(shí)數(shù).若分式的值為零,則或又因?yàn)?/span>.所以關(guān)于的方程有兩個(gè)根分別為.
應(yīng)用上面的結(jié)論解答下列問題:
(1)方程的兩個(gè)解中較小的一個(gè)為 .
(2)關(guān)于解的方程,首先我們兩邊同加成,則 或 ,兩個(gè)解分別為, 則 , .
(3)關(guān)于的方程的兩個(gè)解分別為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】港在地的正南千米處,一艘輪船由港開出向西航行,某人第一次在處望見該船在南偏西,半小時(shí)后,又望見該船在南偏西,則該船速度為________千米/小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測(cè)某飲料會(huì)暢銷、先用1800元購(gòu)進(jìn)一批這種飲料,面市后果然供不應(yīng)求,又用8100元購(gòu)進(jìn)這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2元.
(1)第一批飲料進(jìn)貨單價(jià)多少元?
(2)若兩次進(jìn)飲料都按同一價(jià)格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價(jià)至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】背景知識(shí):如圖,在中,,若,則:.
(1)解決問題:
如圖(1),,,是過點(diǎn)的直線,過點(diǎn)作于點(diǎn),連接,現(xiàn)嘗試探究線段、、 之間的數(shù)量關(guān)系:過點(diǎn)作,與交于點(diǎn),易發(fā)現(xiàn)圖中出現(xiàn)了一對(duì)全等三角形,即,由此可得線段、、之間的數(shù)量關(guān)系是: ;
(2)類比探究:
將圖(1)中的繞點(diǎn)旋轉(zhuǎn)到圖(2)的位置,其它條件不變,試探究線段、、之間的數(shù)量關(guān)系,并證明;
(3)拓展應(yīng)用:
將圖(1)中的繞點(diǎn)旋轉(zhuǎn)到圖 (3)的位置,其它條件不變,若,,則的長(zhǎng)為 (直接寫結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)P是等邊三角形ABC內(nèi)的一點(diǎn),且PA=6,PB=8,PC=10,若將△PAC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,得到△P′AB,則∠APB等于( )
A.150° B.105° C.120° D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,4張背面完全相同的紙牌(用①、②、③、④表示),在紙牌的正面分別寫有四個(gè)不同的條件,小明將這4張紙牌背面朝上洗勻后,先隨機(jī)摸出一張(不放回),再隨機(jī)摸出一張.
(1)用樹狀圖(或列表法)表示兩次摸牌出現(xiàn)的所有可能結(jié)果;
(2)以兩次摸出牌上的結(jié)果為條件,求能判斷四邊形ABCD是平行四邊形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲,乙兩名自行車騎手均從P地出發(fā),騎車前往距P地60千米的Q地,當(dāng)乙騎手出發(fā)了1.5小時(shí),此時(shí)甲,乙兩名騎手相距6千米,因甲騎手接到緊急任務(wù),故甲到達(dá)Q地后立即又原路返回P地甲,乙兩名騎手距P地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)圖象如圖所示.(其中折線O﹣A﹣B﹣C﹣D(實(shí)線)表示甲,折線O﹣E﹣F﹣G(虛線)表示乙)
(1)甲騎手在路上停留 小時(shí),甲從Q地返回P地時(shí)的騎車速度為 千米/時(shí);
(2)求乙從P地到Q地騎車過程中(即線段EF)距P地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)在乙騎手出發(fā)后,且在甲,乙兩人相遇前,求時(shí)間x(時(shí))的值為多少時(shí),甲,乙兩騎手相距8千米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com