【題目】已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,DE⊥AC于E.
(1)求證:DE為⊙O的切線(xiàn);
(2)G是ED上一點(diǎn),連接BE交圓于F,連接AF并延長(zhǎng)交ED于G.若GE=2,AF=3,求EF的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)∠EAF的度數(shù)為30°
【解析】
(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據(jù)切線(xiàn)的判定定理得到結(jié)論;
(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到 于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAF的度數(shù)即可.
(1)證明:連接OD,如圖,
∵OB=OD,
∴∠OBD=∠ODB,
∵AB=AC,
∴∠ABC=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE為⊙O的切線(xiàn);
(2)解:∵AB為直徑,
∴∠AFB=90°,
∵∠EGF=∠AGF,
∴Rt△GEF∽△Rt△GAE,
∴,即
整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),
在Rt△AEG中,sin∠EAG
∴∠EAG=30°,
即∠EAF的度數(shù)為30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)在教學(xué)樓前新建了一座雕塑.為了測(cè)量雕塑的高度,小明在二樓找到一點(diǎn),利用三角尺測(cè)得雕塑頂端點(diǎn)的仰角為,底部點(diǎn)的俯角為,小華在五樓找到一點(diǎn),利用三角尺測(cè)得點(diǎn)的俯角為.若為,則雕塑的高度為________.(結(jié)果精確到,參考數(shù)據(jù):).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)P到原點(diǎn)O的距離為ρ,OP與x軸正方向的夾角為α,則用[ρ,α]表示點(diǎn)P的極坐標(biāo),例如:點(diǎn)P的坐標(biāo)為(1,1),則其極坐標(biāo)為[,45°].若點(diǎn)Q的極坐標(biāo)為[4,120°],則點(diǎn)Q的坐標(biāo)為( )
A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c與x軸交于A,B兩點(diǎn),頂點(diǎn)C的縱坐標(biāo)為﹣2,現(xiàn)將拋物線(xiàn)向右平移2個(gè)單位,得到拋物線(xiàn)y=a1x2+b1x+c1,則下列結(jié)論:①b>0;②a﹣b+c<0;③陰影部分的面積為4;④若c=﹣1,則b2=4a.其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線(xiàn)交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是.
(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請(qǐng)畫(huà)出關(guān)于軸對(duì)稱(chēng)的;
(3)請(qǐng)?jiān)?/span>軸上求作一點(diǎn),使的周長(zhǎng)最小,并寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(1,1)、B(3,5),要在坐標(biāo)軸上找一點(diǎn),使得△PAB的周長(zhǎng)最小,則點(diǎn)的坐標(biāo)為( )
A.B.C.或D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm.
(1)在AB上取一點(diǎn)D,當(dāng)AD=_________cm時(shí),△ACD∽△ABC.
(2)在AC的延長(zhǎng)線(xiàn)上取一點(diǎn)E,當(dāng)CE=________cm時(shí),△AEB∽△ABC此時(shí)BE與DC有怎樣的位置關(guān)系?________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線(xiàn)經(jīng)過(guò)點(diǎn),直線(xiàn)經(jīng)過(guò)點(diǎn),且與關(guān)于軸對(duì)稱(chēng),則與的交點(diǎn)坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】天津市奧林匹克中心體育場(chǎng)—“水滴”位于天津市西南部的奧林匹克中心內(nèi),某校九年級(jí)學(xué)生由距“水滴”10千米的學(xué)校出發(fā)前往參觀,一部分同學(xué)騎自行車(chē)先走,過(guò)了20分鐘后,其余同學(xué)乘汽車(chē)出發(fā),結(jié)果他們同時(shí)到達(dá).已知汽車(chē)的速度是騎車(chē)同學(xué)速度的2倍,求騎車(chē)同學(xué)的速度.
(1)設(shè)騎車(chē)同學(xué)的速度為x千米/時(shí),利用速度、時(shí)間、路程之間的關(guān)系填寫(xiě)下表.(要求:填上適當(dāng)?shù)拇鷶?shù)式,完成表格)
速度(千米/時(shí)) | 所用時(shí)間(時(shí)) | 所走的路程(千米) | |
騎自行車(chē) | x | 10 | |
乘汽車(chē) | 10 |
(2)列出方程(組),并求出問(wèn)題的解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com