【題目】天津市奧林匹克中心體育場—“水滴位于天津市西南部的奧林匹克中心內(nèi),某校九年級學(xué)生由距水滴”10千米的學(xué)校出發(fā)前往參觀,一部分同學(xué)騎自行車先走,過了20分鐘后,其余同學(xué)乘汽車出發(fā),結(jié)果他們同時到達(dá).已知汽車的速度是騎車同學(xué)速度的2倍,求騎車同學(xué)的速度.

1)設(shè)騎車同學(xué)的速度為x千米/時,利用速度、時間、路程之間的關(guān)系填寫下表.(要求:填上適當(dāng)?shù)拇鷶?shù)式,完成表格)

速度(千米/時)

所用時間(時)

所走的路程(千米)

騎自行車

x

10

乘汽車

10

2)列出方程(組),并求出問題的解.

【答案】1)見解析;(2)騎自行車同學(xué)的速度為15干米/.

【解析】

1)根據(jù)時間=路程÷速度,速度=路程÷時間計算即可;

2)根據(jù)等量關(guān)系:騎自行車時間=坐汽車時間+列出方程計算即可.

1

速度(千米/時)

所用時間(時)

所走的路程(千米)

騎自行車

x

10

乘汽車

2x

10

2)由(1)可列方程:=+,

解得:

經(jīng)檢驗(yàn),是原方程的解,

答:騎自行車同學(xué)的速度為15干米/.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點(diǎn)D,DEACE.

(1)求證:DE為⊙O的切線;

(2)GED上一點(diǎn),連接BE交圓于F,連接AF并延長交EDG.若GE=2,AF=3,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知;如圖,在△ABC中,ABBC,∠ABC90度.FAB延長線上一點(diǎn),點(diǎn)EBC上,BEBF,連接AE、EFCF

1)求證:AECF;(2)若∠CAE30°,求∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為更好的了解中學(xué)生課外閱讀的情況,學(xué)校團(tuán)委將初一年級學(xué)生一學(xué)期閱讀課外書籍量分為A3本以內(nèi))、B3——6本)、C6——10本)、D10本以上)四種情況進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果制成了如下兩幅不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖所給信息解答上列問題:

1)在扇形統(tǒng)計圖中C所占的百分比是多少?

2)請將折線統(tǒng)計圖補(bǔ)充完整;

3)學(xué)校團(tuán)委欲從課外閱讀量在10本以上的同學(xué)中隨機(jī)邀請兩位參加學(xué)校舉辦的書香致遠(yuǎn) 墨卷至恒主題讀書日的形象大使,請你用列表法或畫樹狀圖的方法,求所選出的兩位同學(xué)恰好都是女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人同時從圓形跑道(圓形跑道的總長小于700m)上一直徑兩端A,B相向起跑.第一次相遇時離A點(diǎn)100m,第二次相遇時離B點(diǎn)60m,則圓形跑道的總長為(

A.240mB.360mC.480mD.600m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小華剪了兩條寬均為的紙條,交叉疊放在一起,且它們的交角為,則它們重疊部分的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:任意一個有理數(shù)與無理數(shù)的和為無理數(shù),任意一個不為零的有理數(shù)與一個無理數(shù)的積為無理數(shù),而零與無理數(shù)的積為零.由此可得:如果axb0,其中ab為有理數(shù),x為無理數(shù),那么a0b0

運(yùn)用上述知識,解決下列問題:

1)如果(a2b30,其中ab為有理數(shù),那么a  b  ;

2)如果2ba﹣(ab45,其中a、b為有理數(shù),求3a2b的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC∠AOB的角平分線,POC上一點(diǎn).PD⊥OAOAD,PE⊥OBOBEFOC上的另一點(diǎn),連接DFEF.求證:DF=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為2,弦AB的長為2,以AB為直徑作⊙M,點(diǎn)C是優(yōu)弧弧AB上的一個動點(diǎn),連結(jié)AC、BC分別交⊙M于點(diǎn)D、E,則線段CD的最大值為( 。

A. B. 2 C. 2-2 D. 4-2

查看答案和解析>>

同步練習(xí)冊答案