【題目】隨著一帶一路的進(jìn)一步推進(jìn),我國(guó)瓷器(“china”)更為一帶一路沿線人民所推崇,一外國(guó)商戶看準(zhǔn)這一商機(jī),向我國(guó)一瓷器經(jīng)銷商咨詢工藝品茶具,得到如下信息:

(1)每個(gè)茶壺的批發(fā)價(jià)比茶杯多110元;

(2)一套茶具包括一個(gè)茶壺與四個(gè)茶杯;

(3)600元批發(fā)茶壺的數(shù)量與160元批發(fā)茶杯的數(shù)量相同.

根據(jù)以上信息:求茶壺與茶杯的批發(fā)價(jià)

(1)求茶壺與茶杯的批發(fā)價(jià);

(2)若該商戶購(gòu)進(jìn)茶杯的數(shù)量是茶壺?cái)?shù)量的5倍還多20個(gè),并且茶壺?cái)?shù)量不超過(guò)30個(gè),該商戶打算將茶具按每套500元成套銷售,剩余的茶杯每個(gè)70元零售,應(yīng)如何進(jìn)貨才能使這批茶具獲利最多?并求出最大利潤(rùn).

【答案】(1) 茶杯的批發(fā)價(jià)為40/個(gè),則茶壺的批發(fā)價(jià)為150/個(gè);(2) 當(dāng)購(gòu)進(jìn)30個(gè)茶壺、170個(gè)茶杯時(shí),有最大利潤(rùn),最大利潤(rùn)為7200

【解析】

(1)設(shè)茶杯的批發(fā)價(jià)為x/個(gè),則茶壺的批發(fā)價(jià)為(x+110)元/個(gè),根據(jù)數(shù)量=總價(jià)÷單價(jià)結(jié)合600元批發(fā)茶壺的數(shù)量與160元批發(fā)茶杯的數(shù)量相同,即可得出關(guān)于x的分式方程,解之并檢驗(yàn)后即可得出結(jié)論;
(2)設(shè)商戶購(gòu)進(jìn)茶壺m個(gè),則購(gòu)進(jìn)茶杯(5m+20)個(gè),設(shè)利潤(rùn)為w,根據(jù)總利潤(rùn)=單件利潤(rùn)×銷售數(shù)量結(jié)合銷售方式,即可得出w關(guān)于m的函數(shù)關(guān)系式,利用一次函數(shù)的性質(zhì)即可解決最值問(wèn)題.

(1)設(shè)茶杯的批發(fā)價(jià)為x/個(gè),則茶壺的批發(fā)價(jià)為(x+110)元/個(gè),

根據(jù)題意得:,

解得:x=40,

經(jīng)檢驗(yàn),x=40是原分式方程的解,

x+110=150.

答:茶杯的批發(fā)價(jià)為40/個(gè),則茶壺的批發(fā)價(jià)為150/個(gè).

(2)設(shè)商戶購(gòu)進(jìn)茶壺m個(gè),則購(gòu)進(jìn)茶杯(5m+20)個(gè),

若利潤(rùn)為w元,則w=m(500﹣150﹣4×40)+(5m+20﹣4m)×(70﹣40)=220m+600,

w隨著m的增大而增大,

∴當(dāng)m取最大值時(shí),利潤(rùn)w最大,

m≤30,

∴當(dāng)m=30時(shí),w=7200.

∴當(dāng)購(gòu)進(jìn)30個(gè)茶壺、170個(gè)茶杯時(shí),有最大利潤(rùn),最大利潤(rùn)為7200元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y= x﹣b與y= x﹣1的圖象之間的距離等于3,則b的值為(
A.﹣2或4
B.2或﹣4
C.4或﹣6
D.﹣4或6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中(如圖每格一個(gè)單位),描出下列各點(diǎn)A(﹣2,﹣1),B(2,﹣1),C(2,2),D(3,2),E(0,3),F(xiàn)(﹣3,2),G(﹣2,2),A(﹣2,﹣1)并依次將各點(diǎn)連接起來(lái),觀察所描出的圖形,它像什么?根據(jù)圖形回答下列問(wèn)題:

(1)圖形中哪些點(diǎn)在坐標(biāo)軸上,它們的坐標(biāo)有什么特點(diǎn)?

(2)線段FD和x軸有什么位置關(guān)系?點(diǎn)F和點(diǎn)D的坐標(biāo)有什么特點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知2x﹣y=8,求代數(shù)式[x2+y2﹣(x﹣y)2+2y(x﹣y)]÷4y的值.

(2)閱讀下列材料:常用分解因式的方法有提取公因式法、公式法,但有部分多項(xiàng)式只單純用上述方法就無(wú)法分解,如x2﹣2xy+y2﹣16,我們細(xì)心觀察這個(gè)式子就會(huì)發(fā)現(xiàn),前三項(xiàng)符合完全平方公式,進(jìn)行變形后可以與第四項(xiàng)結(jié)合再運(yùn)用平方差公式進(jìn)行分解.過(guò)程如下:x2﹣2xy+y2﹣16=(x﹣y)2﹣16=(x﹣y+4)(x﹣y﹣4)這種分解因式的方法叫分組分解法.利用這種分組的思想方法解決下列問(wèn)題:

已知a,b,c分別是△ABC三邊的長(zhǎng),且2a2+b2+c2﹣2a(b+c)=0請(qǐng)判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AB=4cm,∠ADC=120°,點(diǎn)E、F同時(shí)由A、C兩點(diǎn)出發(fā),分別沿AB、CB方向向點(diǎn)B勻速移動(dòng)(到點(diǎn)B為止),點(diǎn)E的速度為1cm/s,點(diǎn)F的速度為2cm/s,經(jīng)過(guò)t秒△DEF為等邊三角形,則t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以圖1(以O為圓心,半徑1 的半圓)作為基本圖形,分別經(jīng)歷如下變換能得到圖2的序號(hào)是 (多填或錯(cuò)填得0,少填酌情給分)

只要向右平移1個(gè) 單位;

先以直線AB為對(duì)稱軸進(jìn)行對(duì)稱變換,再向右平移1個(gè)單位;

先繞著O旋轉(zhuǎn)180°,再向右平移1個(gè)單位;

只要繞著某點(diǎn)旋轉(zhuǎn)180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABC中,∠ACB=90°,點(diǎn)D是斜邊AB的中點(diǎn),DEBC,且CE=CD

(1)求證:∠B=DEC;

(2)求證:四邊形ADCE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l經(jīng)過(guò)點(diǎn)A(-1,0)和點(diǎn)B(1,4).

(1)求直線l的解析式;

(2)若點(diǎn)Px軸上的點(diǎn),且△APB的面積為8,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,,點(diǎn)在第二象限的角平分線上,、的垂直平分線交于點(diǎn).

(1)求證:

(2)設(shè)軸于點(diǎn),若,求點(diǎn)的坐標(biāo);

(3)軸于點(diǎn),若,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案