【題目】在平面直角坐標(biāo)系中,,點(diǎn)在第二象限的角平分線(xiàn)上,、的垂直平分線(xiàn)交于點(diǎn).
(1)求證:;
(2)設(shè)交軸于點(diǎn),若,求點(diǎn)的坐標(biāo);
(3)作交軸于點(diǎn),若,求點(diǎn)的坐標(biāo).
【答案】(1)見(jiàn)解析;(2);(3)
【解析】
(1)設(shè),則,則,,根據(jù),得到,根據(jù)三角形的內(nèi)角和得到,即可求出
.即可證明.
(2)是等腰過(guò)作直線(xiàn)軸,作,,證明,即可求出進(jìn)而求出點(diǎn)的坐標(biāo);
(3)證明,根據(jù)全等三角形的性質(zhì)得到,根據(jù)直角三角形中30度角的性質(zhì)得到,即可求出點(diǎn)的坐標(biāo).
(1)設(shè),則
,,
∵,
∴,
中,,
∴.
∴.
(2)結(jié)合題干和第一問(wèn)可知:是等腰(三垂直求坐標(biāo)),
過(guò)作直線(xiàn)軸,作,
,
,
在線(xiàn)段上,面積法求出(用全等亦可)
(3)中,,
,∴,
∵, ,
又∵,∴,
∴,∴.
連,
∴,
,
∴,
∴,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“一帶一路”的進(jìn)一步推進(jìn),我國(guó)瓷器(“china”)更為“一帶一路”沿線(xiàn)人民所推崇,一外國(guó)商戶(hù)看準(zhǔn)這一商機(jī),向我國(guó)一瓷器經(jīng)銷(xiāo)商咨詢(xún)工藝品茶具,得到如下信息:
(1)每個(gè)茶壺的批發(fā)價(jià)比茶杯多110元;
(2)一套茶具包括一個(gè)茶壺與四個(gè)茶杯;
(3)600元批發(fā)茶壺的數(shù)量與160元批發(fā)茶杯的數(shù)量相同.
根據(jù)以上信息:求茶壺與茶杯的批發(fā)價(jià)
(1)求茶壺與茶杯的批發(fā)價(jià);
(2)若該商戶(hù)購(gòu)進(jìn)茶杯的數(shù)量是茶壺?cái)?shù)量的5倍還多20個(gè),并且茶壺?cái)?shù)量不超過(guò)30個(gè),該商戶(hù)打算將茶具按每套500元成套銷(xiāo)售,剩余的茶杯每個(gè)70元零售,應(yīng)如何進(jìn)貨才能使這批茶具獲利最多?并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三個(gè)天平的托盤(pán)中形狀相同的物體質(zhì)量相等.圖①、圖②所示的兩個(gè)天平處于平衡狀態(tài),要使第三個(gè)天平也保持平衡,可在它的右盤(pán)中放置( )
A. 3個(gè)球 B. 4個(gè)球
C. 5個(gè)球 D. 6個(gè)球
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)計(jì)劃把甲種貨物1240噸和乙種貨物880噸用一列貨車(chē)運(yùn)往某地,已知這列貨車(chē)掛在A、B兩種不同規(guī)格的貨車(chē)廂共40節(jié),使用A型車(chē)廂每節(jié)費(fèi)用為6000元,使用B型車(chē)廂每節(jié)費(fèi)用為8000元.
(1)設(shè)運(yùn)送這批貨物的總費(fèi)用為y萬(wàn)元,這列貨車(chē)掛A型車(chē)廂x 節(jié),試定出用車(chē)廂節(jié)數(shù)x表示總費(fèi)用y的公式.
(2)如果每節(jié)A型車(chē)廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車(chē)廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時(shí)按此要求安排A、B兩種車(chē)廂的節(jié)數(shù),那么共有哪幾種安排車(chē)廂的方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義新運(yùn)算:對(duì)于任意實(shí)數(shù)a,b,都有a⊕b=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運(yùn)算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5
(1)求3⊕(﹣2)的值;
(2)若3⊕x的值小于16,求x的取值范圍,并在數(shù)軸上表示出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有下列條件:①BD=DC,AB=AC;②∠ADB=∠ADC,∠B=∠C;③∠B=∠C,∠BAD=∠CAD;④∠B=∠C,BD=DC其中,不能證明△ABD≌△ACD的是_____(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,下列條件中,不能說(shuō)明AB⊥CD的是( )
A. ∠AOD=90°
B. ∠AOC=∠BOC
C. ∠BOC+∠BOD=180°
D. ∠AOC+∠BOD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點(diǎn),與反比例函數(shù) 的圖象相交于C,D兩點(diǎn),分別過(guò)C,D兩點(diǎn)作y軸,x軸的垂線(xiàn),垂足為E,F(xiàn),連接CF,DE.有下列四個(gè)結(jié)論:
①△CEF與△DEF的面積相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正確的結(jié)論是( )
A.①②
B.①②③
C.①②③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點(diǎn)C是弧AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)C作CD⊥OA于點(diǎn)D,作CE⊥OB于點(diǎn)E,連結(jié)DE,點(diǎn)F在線(xiàn)段DE上,且EF=2DF,過(guò)點(diǎn)C的直線(xiàn)CG交OA的延長(zhǎng)線(xiàn)于點(diǎn)G,且∠CGO=∠CDE.
(1)求證:CG與弧AB所在圓相切.
(2)當(dāng)點(diǎn)C在弧AB上運(yùn)動(dòng)時(shí),△CFD的三條邊是否存在長(zhǎng)度不變的線(xiàn)段?若存在,求出該線(xiàn)段的長(zhǎng)度;若不存在,說(shuō)明理由.
(3)若∠CGD=60°,求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com