【題目】在平面直角坐標(biāo)系中,,點在第二象限的角平分線上,的垂直平分線交于點.

(1)求證:;

(2)設(shè)軸于點,若,求點的坐標(biāo);

(3)軸于點,若,求點的坐標(biāo).

【答案】(1)見解析;(2);(3)

【解析】

(1)設(shè),則,,,根據(jù),得到,根據(jù)三角形的內(nèi)角和得到,即可求出

.即可證明.

(2)是等腰作直線軸,作,,證明,即可求出進(jìn)而求出點的坐標(biāo);

(3)證明,根據(jù)全等三角形的性質(zhì)得到,根據(jù)直角三角形中30度角的性質(zhì)得到,即可求出點的坐標(biāo).

(1)設(shè),則

,,

,

中,

.

.

(2)結(jié)合題干和第一問可知:是等腰(三垂直求坐標(biāo)),

作直線軸,作,

,

,

在線段上,面積法求出(用全等亦可)

(3)中,,

,

, ,

又∵,,

,.

,

,

,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著一帶一路的進(jìn)一步推進(jìn),我國瓷器(“china”)更為一帶一路沿線人民所推崇,一外國商戶看準(zhǔn)這一商機(jī),向我國一瓷器經(jīng)銷商咨詢工藝品茶具,得到如下信息:

(1)每個茶壺的批發(fā)價比茶杯多110元;

(2)一套茶具包括一個茶壺與四個茶杯;

(3)600元批發(fā)茶壺的數(shù)量與160元批發(fā)茶杯的數(shù)量相同.

根據(jù)以上信息:求茶壺與茶杯的批發(fā)價

(1)求茶壺與茶杯的批發(fā)價;

(2)若該商戶購進(jìn)茶杯的數(shù)量是茶壺數(shù)量的5倍還多20個,并且茶壺數(shù)量不超過30個,該商戶打算將茶具按每套500元成套銷售,剩余的茶杯每個70元零售,應(yīng)如何進(jìn)貨才能使這批茶具獲利最多?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三個天平的托盤中形狀相同的物體質(zhì)量相等.圖①、圖②所示的兩個天平處于平衡狀態(tài),要使第三個天平也保持平衡,可在它的右盤中放置(  )

A. 3個球 B. 4個球

C. 5個球 D. 6個球

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)計劃把甲種貨物1240噸和乙種貨物880噸用一列貨車運往某地,已知這列貨車掛在AB兩種不同規(guī)格的貨車廂共40節(jié),使用A型車廂每節(jié)費用為6000元,使用B型車廂每節(jié)費用為8000.

1)設(shè)運送這批貨物的總費用為y萬元,這列貨車掛A型車廂x 節(jié),試定出用車廂節(jié)數(shù)x表示總費用y的公式.

2)如果每節(jié)A型車廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時按此要求安排AB兩種車廂的節(jié)數(shù),那么共有哪幾種安排車廂的方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運算:對于任意實數(shù)a,b,都有ab=a(a﹣b)+1,等式右邊是通常的加法,減法及乘法運算.比如:25=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5

(1)求3(﹣2)的值;

(2)若3x的值小于16,求x的取值范圍,并在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有下列條件:①BD=DC,AB=AC;②∠ADB=∠ADC,∠B=∠C;③∠B=∠C,∠BAD=∠CAD;④∠B=∠C,BD=DC其中,不能證明△ABD≌△ACD的是_____(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點O,下列條件中,不能說明ABCD的是(  )

A. AOD90°

B. AOC=∠BOC

C. BOC+∠BOD180°

D. AOC+∠BOD180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點,與反比例函數(shù) 的圖象相交于C,D兩點,分別過C,D兩點作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列四個結(jié)論:
①△CEF與△DEF的面積相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正確的結(jié)論是( )

A.①②
B.①②③
C.①②③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形OAB的半徑OA=3,圓心角∠AOB=90°,點C是弧AB上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,連結(jié)DE,點F在線段DE上,且EF=2DF,過點C的直線CG交OA的延長線于點G,且∠CGO=∠CDE.
(1)求證:CG與弧AB所在圓相切.
(2)當(dāng)點C在弧AB上運動時,△CFD的三條邊是否存在長度不變的線段?若存在,求出該線段的長度;若不存在,說明理由.
(3)若∠CGD=60°,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案