【題目】如圖,已知直線l經(jīng)過點A(-1,0)和點B(1,4).

(1)求直線l的解析式;

(2)若點Px軸上的點,且△APB的面積為8,求點P的坐標.

【答案】(1)y=2x+2;(2)P (-5,0)(3,0).

【解析】

(1)首先設(shè)出設(shè)直線l1的解析式為y=kx+b(k≠0),根據(jù)待定系數(shù)法把點A(-1,0)和點B(1,4)代入設(shè)的解析式,即可求出一次函數(shù)的解析式;

(2)根據(jù)三角形的面積計算出AP的長,進而得到P點坐標.

(1)設(shè)直線l1的解析式為y=kx+b(k≠0),

∵一次函數(shù)的圖象經(jīng)過點A(-1,0)和點B(1,4),

解得,

∴直線l1的解析式為y=2x+2;

(2)∵△APB的面積為8,點B(1,4),

×AP×4=8,

解得:AP=4,

∵點A(-1,0),

P(-5,0)或(3,0).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在銳角ABC中,ABC=45°,高線AD、BE相交于點F.

(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;

(2)如圖2,將ACD沿線段AD對折,點C落在BD上的點M,AM與BE相交于點N,當DEAM時,判斷NE與AC的數(shù)量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著一帶一路的進一步推進,我國瓷器(“china”)更為一帶一路沿線人民所推崇,一外國商戶看準這一商機,向我國一瓷器經(jīng)銷商咨詢工藝品茶具,得到如下信息:

(1)每個茶壺的批發(fā)價比茶杯多110元;

(2)一套茶具包括一個茶壺與四個茶杯;

(3)600元批發(fā)茶壺的數(shù)量與160元批發(fā)茶杯的數(shù)量相同.

根據(jù)以上信息:求茶壺與茶杯的批發(fā)價

(1)求茶壺與茶杯的批發(fā)價;

(2)若該商戶購進茶杯的數(shù)量是茶壺數(shù)量的5倍還多20個,并且茶壺數(shù)量不超過30個,該商戶打算將茶具按每套500元成套銷售,剩余的茶杯每個70元零售,應如何進貨才能使這批茶具獲利最多?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若直線l1經(jīng)過點(0,4),l2經(jīng)過(3,2),且l1l2關(guān)于x軸對稱,則l1l2的交點坐標為

A. (-2,0) B. (2,0) C. (-6,0) D. (6,0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有3個正方形按如圖所示放置,其中大正方形的邊長是1,陰影部分的面積依次記為S1 , S2 , 則S1+S2等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】益馬高速通車后,將桃江馬跡塘的農(nóng)產(chǎn)品運往益陽的運輸成本大大降低。馬跡塘一農(nóng)戶需要將A,B兩種農(nóng)產(chǎn)品定期運往益陽某加工廠,每次運輸A,B產(chǎn)品的件數(shù)不變,原來每運一次的運費是1200元,現(xiàn)在每運一次的運費比原來減少了300元,A,B兩種產(chǎn)品原來的運費和現(xiàn)在的運費(單位:元∕件)如下表所示:

品種

A

B

原來的運費

45

25

現(xiàn)在的運費

30

20

(1)求每次運輸?shù)霓r(nóng)產(chǎn)品中A,B產(chǎn)品各有多少件?

(2)由于該農(nóng)戶誠實守信,產(chǎn)品質(zhì)量好,加工廠決定提高該農(nóng)戶的供貨量,每次運送的總件數(shù)增加8件,但總件數(shù)中B產(chǎn)品的件數(shù)不得超過A產(chǎn)品件數(shù)的2倍,問產(chǎn)品件數(shù)增加后,每次運費最少需要多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三個天平的托盤中形狀相同的物體質(zhì)量相等.圖①、圖②所示的兩個天平處于平衡狀態(tài),要使第三個天平也保持平衡,可在它的右盤中放置(  )

A. 3個球 B. 4個球

C. 5個球 D. 6個球

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)計劃把甲種貨物1240噸和乙種貨物880噸用一列貨車運往某地,已知這列貨車掛在AB兩種不同規(guī)格的貨車廂共40節(jié),使用A型車廂每節(jié)費用為6000元,使用B型車廂每節(jié)費用為8000.

1)設(shè)運送這批貨物的總費用為y萬元,這列貨車掛A型車廂x 節(jié),試定出用車廂節(jié)數(shù)x表示總費用y的公式.

2)如果每節(jié)A型車廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時按此要求安排A、B兩種車廂的節(jié)數(shù),那么共有哪幾種安排車廂的方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=x+3的圖象與x軸,y軸交于A,B兩點,與反比例函數(shù) 的圖象相交于C,D兩點,分別過C,D兩點作y軸,x軸的垂線,垂足為E,F(xiàn),連接CF,DE.有下列四個結(jié)論:
①△CEF與△DEF的面積相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正確的結(jié)論是( )

A.①②
B.①②③
C.①②③④
D.②③④

查看答案和解析>>

同步練習冊答案