若點(diǎn)A(8,y1)、B(2,y2)在雙曲線數(shù)學(xué)公式上,則y1和y2的大小關(guān)系為_(kāi)_______.

y1<y2
分析:根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,將點(diǎn)A(8,y1)、B(2,y2)分別代入雙曲線,求得y1和y2的值,然后再來(lái)比較它們的大。
解答:∵點(diǎn)A(8,y1)、B(2,y2)在雙曲線上,
∴y1==,y2==1;
<1,
∴y1<y2
故答案是:y1<y2
點(diǎn)評(píng):此題主要考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征.解答此題時(shí),也可以利用反比例函數(shù)圖象的單調(diào)性來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數(shù)y=-
2
x
的圖象上,且x1<0<x2<x3,則y1、y2、y3的大小關(guān)系是(  )
A、y1<y3<y2
B、y2<y3<y3
C、y1<y2<y3
D、y2<y3<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A(2,y1)、B(6,y2)在函數(shù)y=
12x
的圖象上,則y1
 
y2(填“<”或“>”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象過(guò)點(diǎn)A(1,2),B(3,2),C(5,7).若點(diǎn)M(-2,y1),N(-1,y2),K(8,y3)也在二次函數(shù)y=ax2+bx+c的圖象上,則y1,y2,y3從小到大的順序?yàn)?!--BA-->

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•和平區(qū)一模)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知拋物線C1:y=x2,點(diǎn)A(2,4).
(Ⅰ)求直線OA的解析式;
(Ⅱ)直線x=2與x軸相交于點(diǎn)B,將拋物線C1從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng),設(shè)拋物線頂點(diǎn)M的橫坐標(biāo)為m.
①當(dāng)m為何值時(shí),線段PB最短?
②當(dāng)線段PB最短時(shí),相應(yīng)的拋物線上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)將拋物線C1作適當(dāng)?shù)钠揭,得拋物線C2:y=x2-x+c,若點(diǎn)D(x1,y1),E(x2,y2)在拋物線C2上,且D、E兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對(duì)稱,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

反比例函數(shù)y=-
3
x
,若點(diǎn)A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函數(shù)y=-
3
x
圖象上的三點(diǎn),且x1>x2>0>x3,則y1、y2、y3的大小關(guān)系(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案