【題目】如圖,在菱形中, ,已知△ABC的周長為15,則菱形的對角線的長為( ).

A. B. C. D.

【答案】A

【解析】

根據(jù)菱形的性質(zhì)可得AB=BC,∠BAC=BAD=60°,OA=OC=AC,OB=OD=BD,ACBD,根據(jù)有一個角為60°的等腰三角形為等邊三角形即可判定△ABC是等邊三角形,由此求得AB=BC=AC=5,再利用勾股定理求得OB=,即可得BD=

∵四邊形ABCD是菱形,,

AB=BC,∠BAC=BAD=60°,OA=OC=ACOB=OD=BD,ACBD,

∴△ABC是等邊三角形,

∵△ABC的周長是15

AB=BC=AC=5,

OA=AC=,

RtAOB中,由勾股定理求得OB=

BD=

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)(為常數(shù)),在自變量的值滿足情況下,與其對應(yīng)的函數(shù)值的最小值為,則的值為( )

A. 4B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣闊無垠的太空中有無數(shù)顆恒星,其中離太陽系最近的一顆恒星稱為“比鄰星”,它距離太陽系約4.2光年.光年是天文學(xué)中一種計量天體時空距離的長度單位,1光年約為9500000000000千米.則“比鄰星”距離太陽系約為( )

A. 千米B. 千米C. 千米D. 千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠加工一種商品,每天加工件數(shù)不超過100件時,每件成本80元,每天加工超過100件時,每多加工5件,成本下降2元,但每件成本不得低于70.設(shè)工廠每天加工商品x(件),每件商品成本為y(元),

1)求出每件成本y(元)與每天加工數(shù)量x(件)之間的函數(shù)關(guān)系式,并注明自變量的取值范圍;

2)若每件商品的利潤定為成本的20%,求每天加工多少件商品時利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個工程隊原計劃修建一條長100千米的公路,由于實際情況,進行了兩次改道,每次改道以相同的百分率增加修路長度,使得實際修建長度為121千米,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務(wù)所需天數(shù)是甲工程隊單獨完成修路任務(wù)所需天數(shù)的1.5倍。

1)求兩次改道的平均增長率;

2)求甲、乙兩個工程隊每天各修路多少千米?

3)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過42.4萬元,甲工程隊至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了改善辦公條件,計劃從廠家購買兩種型號電腦.已知每臺種型號電腦價格比每臺種型號電腦價格多0.1萬元,且用10萬元購買種型號電腦的數(shù)量與用8萬購買種型號電腦的數(shù)量相同.

(1)兩種型號電腦每臺價格各為多少萬元?

(2)學(xué)校預(yù)計用不多于9.2萬元的資金購進這兩種電腦共20臺,其中種型號電腦至少要購進10臺,請問有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90°,點A、C的橫坐標(biāo)是一元二次方程x2+2x-3=0的兩根(AOOC),直線ABy軸交于D,D點的坐標(biāo)為

1)求直線AB的函數(shù)表達式;

2)在x軸上找一點E,連接EB,使得以點A、E、B為頂點的三角形與△ABC相似(不包括全等),并求點E的坐標(biāo);

3)在(2)的條件下,點P、Q分別是ABAE上的動點,連接PQ,點P、Q分別從A、E同時出發(fā),以每秒1個單位長度的速度運動,當(dāng)點P到達點B時,兩點停止運動,設(shè)運動時間為t秒,問幾秒時以點AP、Q為頂點的三角形與△AEB相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線y=-x+1與拋物線y=ax2+bx+ca≠0)相交于點A1,0)和點D-45),并與y軸交于點C,拋物線的對稱軸為直線x=-1,且拋物線與x軸交于另一點B

1)求該拋物線的函數(shù)表達式;

2)若點E是直線下方拋物線上的一個動點,求出ACE面積的最大值;

3)如圖2,若點M是直線x=-1的一點,點N在拋物線上,以點A,DM,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD的頂點AB在一個半徑為2的圓上, 頂點C、D在圓內(nèi),將正方形ABCD沿圓的內(nèi)壁作無滑動的滾動當(dāng)滾動一周回到原位置時,點C運動的路徑長為__ _

查看答案和解析>>

同步練習(xí)冊答案