【題目】如圖,是的邊的垂直平分線,垂足為點,與的延長線交于點,連接,,,與交于點,則下列結論:
①四邊形是菱形;
②;
③;
④四邊形
以上四個結論中所有正確的結論是( )
A.①②B.①②③C.②④D.①②④
【答案】D
【解析】
根據菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質一一判斷即可;
解:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB=AB=DC,CD⊥CE,
∵OA∥DC,
∴==,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四邊形ACBE是平行四邊形,
∵AB⊥EC,
∴四邊形ACBE是菱形,故①正確,
∵∠DCE=90°,DA=AE,
∴AC=AD=AE,
∴∠ACD=∠ADC=∠BAE,故②正確,
∵OA∥CD,
∴==,
∴=,故③錯誤,
設△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=3a,
∴四邊形AFOE的面積為4a,△ODC的面積為6a
∴S四邊形AFOE:S△COD=2:3.故④正確,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=-2x+12分別與y軸,x軸交于A,B兩點,點M在y軸上,以點M為圓心的⊙M與直線AB相切于點D,連接MD.
(1)求證:△ADM∽△AOB.
(2)如果⊙M的半徑為2,請寫出點M的坐標,并寫出以點為頂點,且過點M的拋物線的函數(shù)表達式.
(3)在(2)的條件下,試問在此拋物線上是否存在點P,使以P,A,M三點為頂點的三角形與△AOB相似?如果存在,請求出所有符合條件的點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10cm,BD⊥AC于點D,BD=8cm.點M從點A出發(fā),沿AC的方向勻速運動,同時直線PQ由點B出發(fā),沿BA的方向勻速運動,運動過程中始終保持PQ∥AC,直線PQ交AB于點P、交BC于點Q、交BD于點F.連接PM,設運動時間為t秒(0<t≤5).線段CM的長度記作y甲,線段BP的長度記作y乙,y甲和y乙關于時間t的函數(shù)變化情況如圖所示.
(1)由圖2可知,點M的運動速度是每秒 cm;當t= 秒時,四邊形PQCM是平行四邊形?在圖2中反映這一情況的點是 (并寫出此點的坐標);
(2)設四邊形PQCM的面積為ycm2,求y與t之間的函數(shù)關系式;
(3)連接PC,是否存在某一時刻t,使點M在線段PC的垂直平分線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知點M0的坐標為(1,0),將線段OM0繞原點O逆時針方向旋轉45°,再將其延長到M1,使得M1M0⊥OM0,得到線段OM1;又將線段OM1繞原點O逆時針方向旋轉45°,再將其延長到M2,使得M2M1⊥OM1,得到線段OM2;如此下去,得到線段OM3,OM4,OM5,…根據以上規(guī)律,請直接寫出OM2014的長度為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:點A,B,C都在⊙O上,連接AB,AC,點D,E分別在AC,AB上,連接CE并延長交⊙O于點F,連接BD,BF,∠BDC﹣∠BFC=2∠ABF.
(1)如圖1,求證:∠ABD=2∠ACF;
(2)如圖2,CE交BD于點G,過點G作GM⊥AC于點M,若AM=MD,求證:AE=GD;
(3)如圖3,在(2)的條件下,當AE:BE=8:7時,連接DE,且∠ADE=30°.延長BD交⊙O于點H,連接AH,AH=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,點在線段上,由點向點運動,當點與點重合時,停止運動.以點為圓心,為半徑作,與交于點,點在上且在矩形外,.
(1)當時,__________,扇形的面積=__________,點到的最短距離=__________.
(2)與相切時,求的長?
(3)如圖與交于點、,當時,求的長?
(4)請從下面兩問中,任選一道進行作答.
①當與有兩個公共點時,直接寫出的取值范圍.
②直接寫出點的運動路徑長以及的最短距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,.點在上以每秒個單位長度的速度向終點運動.點沿方向以每秒1個單位長度的速度運動,當點不與點重合時,連結,以,為鄰邊作.當點停止運動時,點也隨之停止運動,設點的運動時間為,與重疊部分的圖形面積為.
(1)點到邊的距離 ,點到邊的距離 ;(用含的代數(shù)式表示)
(2)當點落在線段上時,求的值;
(3)求與之間的函數(shù)關系式;
(4)連結,當與的一邊平行或垂直時,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場的運動服裝專柜,對兩種品牌的遠動服分兩次采購試銷后,效益可觀,計劃繼續(xù)采購進行銷售.已知這兩種服裝過去兩次的進貨情況如下表.
第一次 | 第二次 | |
品牌運動服裝數(shù)/件 | 20 | 30 |
品牌運動服裝數(shù)/件 | 30 | 40 |
累計采購款/元 | 10200 | 14400 |
(1)問兩種品牌運動服的進貨單價各是多少元?
(2)由于品牌運動服的銷量明顯好于品牌,商家決定采購品牌的件數(shù)比品牌件數(shù)的倍多5件,在采購總價不超過21300元的情況下,最多能購進多少件品牌運動服?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線(,為常數(shù)且)經過點,頂點為,經過點的直線與軸平行,且與交于點,(在的右側),與的對稱軸交于點,直線經過點.
(1)用表示及點的坐標;
(2)的值是否是定值?若是,請求出這個定值;若不是,請說明理由;
(3)當直線經過點時,求的值及點,的坐標;
(4)當時,設的外心為點,則
①求點的坐標;
②若點在的對稱軸上,其縱坐標為,且滿足,直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com