【題目】已知:如圖,在△ABC中,AB=AC=5,BC=8,D,E分別為BC,AB邊上一點,∠ADE=∠C.

(1)求證:△BDE∽△CAD;

(2)若CD=2,求BE的長.

【答案】1)證明見解析;(22.4.

【解析】

試題(1)由題中條件可得∠B=∠C,所以由已知條件,求證∠BDE=∠CAD即可得△BDE∽△CA;(2)由(1)可得△BDE∽△CAD,進而由相似三角形的對應邊成比例,即可求解線段的長.

試題解析:(1∵ AB=AC∴∠B=∠C

∵∠ADE+∠BDE=∠ADB =∠C+∠CAD,且∠ADE=∠C,∴∠BDE =∠CAD

∴△BDE∽△CAD

2)由(1△BDE∽△CAD

∵ AB="AC=" 5,BC= 8,CD=2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)觀察推理:如圖1,ABC中,∠ACB90°ACBC,直線l過點C,點A,B在直線l同側(cè),BDl,AEl,垂足分別為D,E.求證:AEC≌△CDB;

2)類比探究:如圖2,RtABC中,∠ACB90°,AC2,將斜邊AB繞點A逆時針旋轉(zhuǎn)90°AB',連接B′C,求AB′C的面積.

3)拓展提升:如圖3,等邊EBC中,ECBC3cm,點OBC上且OC2cm,動點P從點E沿射線EClcm/s速度運動,連接OP,將線段OP繞點O逆時針旋轉(zhuǎn)120°得到線段OF,設點P運動的時間為t秒.

①當t______秒時,OFED.

②當t______秒時,點F恰好落在射線EB上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例函數(shù)y=(1≤x≤8)的圖象記為曲線C1,C1沿y軸翻折,得到曲線C2,直線y=-x+b C1 ,C2一共只有兩個公共點,則b的取值范圍是______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AOOM,OA6cm,點B為射線OM上的一個動點,分別以OB、AB為直角邊,點B為直角頂點,在OM兩側(cè)作等腰RtOBF、等腰RtABE,連接EFOMP點,當點B在射線OM上移動時,PB的長度是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知長方形ABCD中,∠A=D=B=C=90,EAD上的一點,FAB上的一點,EFEC,且EFECDE=4cm.

(1)求證:AF=DE.

(2)AD+DC=18,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:平面內(nèi)的直線l1l2相交于點O,對于該平面內(nèi)任意一點M,點M到直線l1l2的距離分別為a、b,則稱有序非負實數(shù)對(a,b)是點M的“距離坐標”,根據(jù)上述定義,距離坐標為(2,1)的點的個數(shù)有( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖8,則下列4個結論:①b2﹣4ac<0; 2a﹣b=0;a+b+c<0;④點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確的是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是某校“河南省漢子聽寫大賽初賽”冠軍組成員的年齡分布

年齡/歲

12

13

14

15

人數(shù)

5

15

x

12﹣x

對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是( 。

A. 平均數(shù)、中位數(shù) B. 平均數(shù)、方差 C. 眾數(shù)、中位數(shù) D. 中位數(shù)、方差

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.平面直角坐標系xOy的原點O在格點上,x軸、y軸都在格線上.線段AB的兩個端點也在格點上.

1)若將線段AB繞點O逆時針旋轉(zhuǎn)90°得到線段A1B1,試在圖中畫出線段A1B1

2)若線段A2B2與線段A1B1關于y軸對稱,請畫出線段A2B2

3)若點P是此平面直角坐標系內(nèi)的一點,當點A、B1、B2、P四邊圍成的四邊形為平行四邊形時,請你直接寫出點P的坐標(寫出一個即可)

查看答案和解析>>

同步練習冊答案